Skip to main content
Log in

On Miniature Hole Quality and Tool Wear When Mechanical Drilling of Mild Steel

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Miniature/micro-drilling of holes is increasingly utilized in manufacturing. While non-conventional machining methods (laser and spark erosion) were applied successfully for micro-drilling, mechanical drilling still of interest to industry due to its unmatched geometrical accuracy. However, tool wear and burr formation would hinder the economics of mechanical drilling supremacy. Hence, the need for understanding of tool wear, burr formation and cutting forces progression with process variables is a step towards comprehensive modelling of micro-drilling mechanics and subsequent enhanced process economics. The current research details experimental trials involving mechanical drilling of steel 1008/CR4 using twin-fluted twist drills of diameters 0.5, 1 and 1.5 mm. Full factorial design of experiments was utilized, and analysis of variance was accomplished to study the effects of feed rate and tool diameter (each of them at 3 levels) on tool flank wear and drilled hole quality. Entry and exit burr heights were increased by 80–150% when tool diameter and feed rate were two times higher. Progression of tool flank wear and usage of bigger tool diameter conversely reduced hole surface roughness. In addition, tool flank wear was increased when reducing of feed rate and using larger tool diameter. Catastrophic failure of 0.5-mm-diameter tool was noticed (after drilling of 46 holes at high feed rate level and after drilling of 97 holes at low feed levels) due to chip packing/jamming in the insufficient flute area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Masuzawa, T.: State of the art of micromachining. CIRP Ann. 49, 473–488 (2000). https://doi.org/10.1016/S0007-8506(07)63451-9

    Article  Google Scholar 

  2. Abdelhafeez, A.M.; Soo, S.L.; Aspinwall, D.K.; Dowson, A.; Arnold, D.: The influence of burr formation and feed rate on the fatigue life of drilled titanium and aluminium alloys used in aircraft manufacture. CIRP Ann. 67, 103–108 (2018). https://doi.org/10.1016/j.cirp.2018.03.013

    Article  Google Scholar 

  3. Alting, L.; Kimura, F.; Hansen, H.N.; Bissacco, G.: Micro engineering. CIRP Ann. 52, 635–657 (2003). https://doi.org/10.1016/S0007-8506(07)60208-X

    Article  Google Scholar 

  4. Schaller, T.; Bohn, L.; Mayer, J.; Schubert, K.: Microstructure grooves with a width of less than 50 μm cut with ground hard metal micro end mills. Precis. Eng. 23, 229–235 (1999). https://doi.org/10.1016/S0141-6359(99)00011-2

    Article  Google Scholar 

  5. Dornfeld, D.; Min, S.; Takeuchi, Y.: Recent advances in mechanical micromachining. CIRP Ann. 55, 745–768 (2006). https://doi.org/10.1016/j.cirp.2006.10.006

    Article  Google Scholar 

  6. Chae, J.; Park, S.S.; Freiheit, T.: Investigation of micro-cutting operations. Int. J. Mach. Tools Manuf 46, 313–332 (2006). https://doi.org/10.1016/j.ijmachtools.2005.05.015

    Article  Google Scholar 

  7. Hyacinth Suganthi, X.; Natarajan, U.; Ramasubbu, N.: A review of accuracy enhancement in microdrilling operations. Int. J. Adv. Manuf. Technol. 81, 199–217 (2015). https://doi.org/10.1007/s00170-015-6900-1

    Article  Google Scholar 

  8. Biermann, D.; Kirschner, M.: Experimental investigations on single-lip deep hole drilling of superalloy Inconel 718 with small diameters. J. Manuf. Process. 20, 332–339 (2015). https://doi.org/10.1016/j.jmapro.2015.06.001

    Article  Google Scholar 

  9. Iwata, K.; Moriwaki, T.; Hoshi, T.: Basic study of high speed micro deep drilling. CIRP Ann. 30, 27–30 (1981). https://doi.org/10.1016/S0007-8506(07)60889-0

    Article  Google Scholar 

  10. Sugawara, A.; Inagaki, K.: Effect of workpiece structure on burr formation in micro-drilling. Precis. Eng. 4, 9–14 (1982). https://doi.org/10.1016/0141-6359(82)90107-6

    Article  Google Scholar 

  11. Stein, J.M.; Dornfeld, D.A.: Burr formation in drilling miniature holes. CIRP Ann. 46, 63–66 (1997). https://doi.org/10.1016/S0007-8506(07)60776-8

    Article  Google Scholar 

  12. Lee, K.; Dornfeld, D.A.: Micro-burr formation and minimization through process control. Precis. Eng. 29, 246–252 (2005). https://doi.org/10.1016/j.precisioneng.2004.09.002

    Article  Google Scholar 

  13. Kim, D.W.; Lee, Y.S.; Chu, C.N.; Oh, Y.T.: Prevention of exit burr in microdrilling of metal foils by using a cyanoacrylate adhesive. Int. J. Adv. Manuf. Technol. 27, 1071–1076 (2005). https://doi.org/10.1007/s00170-004-2304-3

    Article  Google Scholar 

  14. Chern, G.-L.; Lee, H.-J.: Using workpiece vibration cutting for micro-drilling. Int. J. Adv. Manuf. Technol. 27, 688–692 (2005). https://doi.org/10.1007/s00170-004-2255-8

    Article  Google Scholar 

  15. Wu, X.; Li, L.; He, N.; Zhao, M.; Zhan, Z.: Investigation on the influence of material microstructure on cutting force and bur formation in the micro cutting of copper. Int. J. Adv. Manuf. Technol. 79, 321–327 (2015). https://doi.org/10.1007/s00170-015-6828-5

    Article  Google Scholar 

  16. Aziz, M.; Ohnishi, O.; Onikura, H.: Innovative micro hole machining with minimum burr formation by the use of newly developed micro compound tool. J. Manuf. Process. 14, 224–232 (2012). https://doi.org/10.1016/j.jmapro.2011.12.006

    Article  Google Scholar 

  17. Klocke, F.; Gerschwiler, K.; Abouridouane, M.: Size effects of micro drilling in steel. Prod. Eng. 3, 69–72 (2009). https://doi.org/10.1007/s11740-008-0144-y

    Article  Google Scholar 

  18. Abouridouane, M.; Klocke, F.; Lung, D.; Adams, O.: Size effects in micro drilling ferritic-pearlitic carbon steels. Procedia CIRP. 3, 91–96 (2012). https://doi.org/10.1016/j.procir.2012.07.017

    Article  Google Scholar 

  19. Okasha, M.M.; Mativenga, P.T.; Li, L.: Sequential laser mechanical microdrilling of inconel 718 alloy. J. Manuf. Sci. Eng. 133, 011008 (2011). https://doi.org/10.1115/1.4003334

    Article  Google Scholar 

  20. Okasha, M.M.; Driver, N.; Mativenga, P.T.; Li, L.: Mechanical microdrilling of negative-tapered laser-predrilled holes: a new approach for burr minimization. Int. J. Adv. Manuf. Technol. 61, 213–225 (2011). https://doi.org/10.1007/s00170-011-3714-7

    Article  Google Scholar 

  21. Imran, M.; Mativenga, P.T.; Gholinia, A.; Withers, P.J.: Assessment of surface integrity of Ni superalloy after electrical-discharge, laser and mechanical micro-drilling processes. Int. J. Adv. Manuf. Technol. 79, 1303–1311 (2015). https://doi.org/10.1007/s00170-015-6909-5

    Article  Google Scholar 

  22. Imran, M.; Mativenga, P.T.; Gholinia, A.; Withers, P.J.: Evaluation of surface integrity in micro drilling process for nickel-based superalloy. Int. J. Adv. Manuf. Technol. 55, 465–476 (2010). https://doi.org/10.1007/s00170-010-3062-z

    Article  Google Scholar 

  23. Imran, M.; Mativenga, P.T.; Withers, P.J.: Assessment of machining performance using the wear map approach in micro-drilling. Int. J. Adv. Manuf. Technol. 59, 119–126 (2011). https://doi.org/10.1007/s00170-011-3497-x

    Article  Google Scholar 

  24. Yoon, H.-S.; Wu, R.; Lee, T.-M.; Ahn, S.-H.: Geometric optimization of micro drills using Taguchi methods and response surface methodology. Int. J. Precis. Eng. Manuf. 12, 871–875 (2011). https://doi.org/10.1007/s12541-011-0116-6

    Article  Google Scholar 

  25. Pramanik, A.; Basak, A.K.; Uddin, M.S.; Shankar, S.; Debnath, S.; Islam, M.N.: Burr formation during drilling of mild steel at different machining conditions. Mater. Manuf. Process. 34, 726–735 (2019). https://doi.org/10.1080/10426914.2019.1594276

    Article  Google Scholar 

  26. Zhang, X.; Yu, T.; Wang, W.; Zhao, J.: Improved analytical prediction of burr formation in micro end milling. Int. J. Mech. Sci. 151, 461–470 (2019). https://doi.org/10.1016/j.ijmecsci.2018.12.005

    Article  Google Scholar 

  27. Abdelhafeez, A.M.; Soo, S.L.; Aspinwall, D.K.; Dowson, A.; Arnold, D.: A coupled Eulerian lagrangian finite element model of drilling titanium and aluminium alloys. SAE Int. J. Aerosp. 9, 198–207 (2016). https://doi.org/10.4271/2016-01-2126

    Article  Google Scholar 

  28. Sofronas, A.; Taraman, K.: Model development for exit burr thickness as a function of drill geometry and feed. SME Tech. Pap. MR76-253 (1976)

  29. Kim, J.; Dornfeld, D.A.: Development of an analytical model for drilling burr formation in ductile materials. J. Eng. Mater. Technol. 124, 192–198 (2002). https://doi.org/10.1115/1.1429937

    Article  Google Scholar 

  30. Bu, Y.; Liao, W.H.; Tian, W.; Shen, J.X.; Hu, J.: An analytical model for exit burrs in drilling of aluminum materials. Int. J. Adv. Manuf. Technol. 85, 2783–2796 (2016). https://doi.org/10.1007/s00170-015-8125-8

    Article  Google Scholar 

  31. Abdelhafeez, A.M.; Soo, S.L.; Aspinwall, D.K.; Dowson, A.; Arnold, D.: Burr formation and hole quality when drilling titanium and aluminium alloys. Procedia CIRP. 37, 230–235 (2015). https://doi.org/10.1016/j.procir.2015.08.019

    Article  Google Scholar 

  32. Soo, S.L.; Abdelhafeez, A.M.; Li, M.; Hood, R.; Lim, C.M.: The drilling of carbon fibre composite–aluminium stacks and its effect on hole quality and integrity. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 233, 1323–1331 (2019). https://doi.org/10.1177/0954405417728312

    Article  Google Scholar 

  33. Abdelhafeez Hassan, A.; Leung Soo, S.; Aspinwall, D.K.; Arnold, D.; Dowson, A.: An analytical model to predict interlayer burr size following drilling of CFRP-metallic stack assemblies. CIRP Ann. 69 (2020) (in press)

  34. Shaw, M.C.: Metal Cutting Principles. Oxford University Press, Oxford (2005)

    Google Scholar 

  35. Astakhov, V.P.: Effects of the cutting feed, depth of cut, and workpiece (bore) diameter on the tool wear rate. Int. J. Adv. Manuf. Technol. 34, 631–640 (2006). https://doi.org/10.1007/s00170-006-0635-y

    Article  Google Scholar 

  36. Hassan, A.M.; Hayajneh, M.T.: Statistical analysis of the effects of machining parameters and workpiece hardness on the surface finish of machined medium carbon steel. J. Mater. Eng. Perform. 10, 282–289 (2001). https://doi.org/10.1361/105994901770344999

    Article  Google Scholar 

  37. Grzesik, W.: Advanced machining processes of metallic materials: theory, modelling, and applications. Elsevier, Amsterdam (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abdelhafeez Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhafeez Hassan, A., Li, M.J. & Mahmoud, S. On Miniature Hole Quality and Tool Wear When Mechanical Drilling of Mild Steel. Arab J Sci Eng 45, 8917–8929 (2020). https://doi.org/10.1007/s13369-020-04549-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04549-9

Keywords

Navigation