Skip to main content
Log in

Adaptive Cooperation for Millimeter Wave Communications

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, we suggest two adaptive cooperation protocols for millimeter wave communications. The first protocol chooses, between non cooperative and cooperative communications, the protocol that offers the highest instantaneous throughput. The second protocol chooses, between non cooperative and cooperative communications, the protocol maximizing the average throughput. Both protocols use adaptive modulation and coding to select the best modulation and coding scheme maximizing the average or instantaneous throughput. Our results are valid for interference limited millimeter wave communications in the presence of Nakagami fading channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zöchmann, E.; Groll, H.; Pratschner S.: A small-scale fading model for overtaking vehicles in a millimeter wave communication link. In: 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (2019)

  2. Jihao, L.; Zhenfeng, Y.; Yibing, L.; Xiaohang, S; Ji, L.; Wei, Z.: Research on millimeter wave phased array antenna for 5G communication. 2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT)

  3. Tsai, C.-H.; Pepe, F.; Mangraviti, G.; Zong, Z.; Craninckx, J.; Wambacq, P.: A 22.5–27.7-GHz fast-lock bang-bang digital PLL in 28-nm CMOS for millimeter-wave communication With 220-fs RMS Jitter. IEEE Solid State Circuits Lett. 2(9), 232–239 (2019)

    Article  Google Scholar 

  4. Pan, P.; Zi, Z.; Cai, J.; Feng, J.: Millimeter Wave Vacuum Electronic Amplifiers for High Data Rate Communication. In: 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (2019)

  5. Kaur, J.; Singh, M.L.: User assisted cooperative relaying in beamspace massive MIMO NOMA based systems for millimeter wave communications. China Commun. 16(6), 103–113 (2019)

    Google Scholar 

  6. Fukatsu, R.; Sakaguchi, K.: Millimeter-Wave V2V communications with cooperative perception for automated driving. In: 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring)

  7. Zhang, J.; Huang, Y.; Xiao, M.; Wang, J.; Yang, L.: Energy-efficient cooperative hybrid precoding for millimeter-wave communication networks. In: 2018 IEEE Global Communications Conference (GLOBECOM)

  8. Zhang, J.; Huang, Y.; Zhang, C.; He, S.; Xiao, M.; Yang, L.: Cooperative multi-subarray beam training in millimeter wave communication systems. In: GLOBECOM 2017—2017 IEEE Global Communications Conference

  9. Zhu, R.; Wang, Y.E.; Xu, Q.; Liu, Y.; Li, Y. D.: Millimeter-wave to microwave MIMO relays (M4R) for 5G building penetration communications. In: IEEE Radio Wireless Symposium (RWS) (2018)

  10. Jagyasi, D.; Ubaidulla, P.: Low-complexity two-way AF relay design for millimeter wave communication systems. In: 2017 IEEE 85th Vehicular Technology Conference (VTC Spring)

  11. Abdelreheem, A.; Omer, O.A.; Esmaiel, H.; Mohamed, U.S.: Deep learning-based relay selection in D2D millimeter wave communications. In: 2019 International Conference on Computer and Information Sciences (ICCIS)

  12. Ma, B.; Shah-Mansouri, H.; Wong, V.W.S.: Full-duplex relaying for D2D communication in millimeter wave-based 5G networks. IEEE Trans. Wirel. Commun. 17(7), 4417–4431 (2018)

    Article  Google Scholar 

  13. Lee, J.; Lee, Y.H.: AF relaying for millimeter wave communication systems with hybrid RF/baseband MIMO processing. In: 2014 IEEE International Conference on Communications (ICC)

  14. Sim, G.H.; Asadi, A.; Loch, A.; Hollick, M.; Widmer, J.: Opp-relay: managing directionality and mobility issues of millimeter-wave via D2D communication. In: 2017 9th International Conference on Communication Systems and Networks (COMSNETS)

  15. Kong, L.; Ye, L.; Wu, F.; Tao, M.; Chen, G.; Vasilakos, A.V.: Autonomous relay for millimeter-wave wireless communications. IEEE J. Sel. Areas Commun. 35(9), 2127–2136 (2017)

    Article  Google Scholar 

  16. Fan, B.; Tian, H.; Zhu, S.; Chen, Y.; Zhu, X.: Traffic-aware relay vehicle selection in millimeter-wave vehicle-to-vehicle communication. IEEE Wirel. Commun. Lett. 8(2), 400–403 (2019)

    Article  Google Scholar 

  17. Ntontin, K.; Verikoukis, C.: Relay-aided outdoor-to-indoor communication in millimeter-wave cellular networks. IEEE Syst. J. (2019). https://doi.org/10.1109/JSYST.2019.2939745

  18. Abbas, H.; Hamdi, K.: Millimeter wave communications over relay networks. In: 2017 IEEE Wireless Communications and Networking Conference (WCNC)

  19. Liu, J.-H.; Chao H.-L.: Joint relay selection and scheduling algorithm for inter-piconet communications in millimeter wave wireless personal area networks. In: 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)

  20. Akoum, S.; El Ayach, O.; Heath, R.W.: Coverage and capacity in mmWave cellular systems. In: 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR) (2012)

  21. Bai, T.; Alkhateeb, A.; Heath, R.W.: Coverage and capacity of millimeter-wave cellular networks. IEEE Commun. Mag. 52(9), 70–77 (2014)

    Article  Google Scholar 

  22. Sun, S.; Rappaport, T.S.; Heath, R.W.; Nix, A.; Rangan, S.: Mimo for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both? IEEE Commun. Mag. 52(12), 110–121 (2014)

    Article  Google Scholar 

  23. Ghasemi, A.; Sousa, E.S.: Fundamental limits of spectrum-sharing in fading environments. IEEE Trans. Wirel. Commun. 6(2), 649–658 (2007)

    Article  Google Scholar 

  24. Hasna, M.O.; Alouini, M.S.: Outage probability of multihop transmission over Nakagami fading channels. IEEE Commun. Lett. 7(5), 216–218 (2003)

    Article  Google Scholar 

  25. Gradshteyn, I.S.; Ryzhik, I.M.: Table of Integrals, Series and Products, 5th edn. Academic, San Diego, CA (1994)

    MATH  Google Scholar 

  26. Proakis, J.: Digital Communications, 5th edn. Mac Graw-Hill, New York (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadhir Ben Halima.

Appendix A

Appendix A

Let Y and Z be two independent Gamma r.v. with joint PDF expressed as [26]

$$\begin{aligned} f_{Y,Z}(y,z)=\frac{m_1^{m_1}m_2^{m_2}y^{m_1-1}z^{m_2-1}e^{-\frac{ym_1}{\beta _1}}e^{-\frac{zm_2}{\beta _2}}}{\Gamma (m_1)\Gamma (m_2)\beta _1^{m_1}\beta _2^{m_2}} \end{aligned}$$
(42)

Let \(U=\frac{Y}{Z}\) and \(V=Y+Z\), the determinant of Jacobian matrix is equal to

$$\begin{aligned} |J|=\begin{vmatrix} \frac{\partial U}{\partial Y}&\frac{\partial U}{\partial Z} \\ \frac{\partial V}{\partial Y}&\frac{\partial V}{\partial Z} \\ \end{vmatrix}=\begin{vmatrix} \frac{1}{Z}&\frac{-Y}{Z^2} \\ 1&1 \\ \end{vmatrix}=\frac{Y+Z}{Z^2}=\frac{(1+U)^2}{V} \end{aligned}$$
(43)

We have \(Z=\frac{V}{1+U}\) and \(Y=\frac{UV}{1+U}\). We deduce the PDF of (UV) as

$$\begin{aligned} f_{U,V}(u,v)= & {} \frac{f_{Y,Z}(y,z)}{|J|}\nonumber \\= & {} \frac{v}{(1+u)^2}\left( \frac{v}{1+u}\right) ^{m_2-1}\left( \frac{vu}{1+u}\right) ^{m_1-1}\nonumber \\&\displaystyle \frac{m_1^{m_1}m_2^{m_2}e^{-\frac{vum_1}{(1+u)\beta _1}}e^{-\frac{vm_2}{(1+u)\beta _2}}}{\Gamma (m_1)\Gamma (m_2)\beta _1^{m_1}\beta _2^{m_2}} \end{aligned}$$
(44)

The PDF of U is computed as

$$\begin{aligned} f_U(u)=\int _0^{+\infty }f_{U,V}(u,v)\hbox {d}v. \end{aligned}$$
(45)

We have [25]

$$\begin{aligned} \int _0^{+\infty }e^{-av}v^b\hbox {d}v=\frac{\Gamma (b+1)}{a^{b+1}} \end{aligned}$$
(46)

Using (45) and (46), we obtain

$$\begin{aligned} f_U(u)=\frac{m_1^{m_1}u^{m_1-1}\Gamma (m_1+m_2)}{\beta _1^{m_1}\Gamma (m_1)\Gamma (m_2)}(1+\frac{u\beta _2m_1}{\beta _1m_2})^{-m_1-m_2}\nonumber \\ \end{aligned}$$
(47)

The PDF of SNR at the destination given in (6) can be deduced from (47) by setting : \(m_1=m_{SD}\), \(m_2=P_Da_{D}\), \(\frac{\beta _1}{m_1}=\beta _{SD}\) and \(\frac{\beta _2}{m_2}=b_{D}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halima, N.B., Boujemâa, H. Adaptive Cooperation for Millimeter Wave Communications. Arab J Sci Eng 45, 6389–6397 (2020). https://doi.org/10.1007/s13369-020-04488-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04488-5

Keywords

Navigation