Skip to main content
Log in

Real-Time Impedance Control Based on Learned Inverse Dynamics

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Impedance control of robotic manipulators allows them to perform interaction task where safety is the foremost requirement. A major hurdle in the implementation of impedance control has always been the requirement of availability and online real-time computation of dynamic model. This paper presents a complete data-driven, machine learning approach to impedance control in real time of an industrial manipulator. The technique used here to learn the inverse dynamic model of an industrial robot is based on an incremental nonparametric statistical learning approach and is called locally weighted projection regression. Unlike traditional model-based control schemes, the proposed control strategy requires less a priori knowledge of the system being modeled, is computationally efficient to run in hard real time, and can be updated during online operation of the arm. The main contribution of this paper is the development of learning-based impedance control scheme and its implementation in hard real time (at 500 Hz control loop rate) on an industrial robot (Barrett WAM arm). To validate performance of the proposed scheme, its comparison with a controller based on an analytically derived model (computed online in a numeric recursive way using Newton–Euler approach) has also been presented through experimentation in a laboratory environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Tsagarakis, N.G.; Laffranchi, M.; Vanderborght, B.; Caldwell, D.G.: A compact soft actuator unit for small scale human friendly robots. In: 2009 IEEE International Conference on Robotics and Automation, pp. 4356–4362. IEEE (2009)

  2. Vanderborght, B.; Albu-Schäffer, A.; Bicchi, A.; Burdet, E.; Caldwell, D.G.; Carloni, R.; Catalano, M.; Eiberger, O.; Friedl, W.; Ganesh, G.; et al.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)

    Article  Google Scholar 

  3. Englsberger, J.; Werner, A.; Ott, C.; Henze, B.; Roa, M.A.; Garofalo, G.; Burger, R.; Beyer, A.; Eiberger, O.; Schmid, K. et al.: Overview of the torque-controlled humanoid robot TORO. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 916–923. IEEE (2014)

  4. Chawda, V.; Niemeyer, G.: Toward torque control of a KUKA LBR IIWA for physical human–robot interaction. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6387–6392. IEEE (2017)

  5. Song, P.; Yu, Y.; Zhang, X.: A tutorial survey and comparison of impedance control on robotic manipulation. Robotica 37(5), 801–836 (2019)

    Article  Google Scholar 

  6. Stürz, Y.R.; Affolter, L.M.; Smith, R.S.: Parameter identification of the KUKA LBR IIWA robot including constraints on physical feasibility. IFAC-PapersOnLine 50(1), 6863–6868 (2017)

    Article  Google Scholar 

  7. Klanke, S.; Vijayakumar, S.; Schaal, S.: A library for locally weighted projection regression. J. Mach. Learn. Res. 9, 623–626 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Madani, T.; Daachi, B.; Djouani, K.: Non-singular terminal sliding mode controller: application to an actuated exoskeleton. Mechatronics 33, 136–145 (2016)

    Article  Google Scholar 

  9. Mohammadi, H.; Richter, H.: Robust tracking/impedance control: application to prosthetics. In: 2015 American Control Conference (ACC), pp. 2673–2678. IEEE (2015)

  10. Focchi, M.; Medrano-Cerda, G.A.; Boaventura, T.; Frigerio, M.; Semini, C.; Buchli, J.; Caldwell, D.G.: Robot impedance control and passivity analysis with inner torque and velocity feedback loops. Control Theory Technol. 14(2), 97–112 (2016)

    Article  MathSciNet  Google Scholar 

  11. Khan, S.G.; Herrmann, G.; Lewis, F.L.; Pipe, T.; Melhuish, C.: Reinforcement learning and optimal adaptive control: an overview and implementation examples. Annu. Rev. Control 36(1), 42–59 (2012)

    Article  Google Scholar 

  12. Asl, H Jabbari; Narikiyo, T.; Kawanishi, M.: Neural network-based bounded control of robotic exoskeletons without velocity measurements. Control Eng. Pract. 80, 94–104 (2018)

    Article  Google Scholar 

  13. Nguyen-Tuong, D.; Peters, J.R.; Seeger, M.: Local Gaussian process regression for real time online model learning. In: Advances in Neural Information Processing Systems, pp. 1193–1200 (2009)

  14. Huang, R.; Cheng, H.; Guo, H.; Chen, Q.; Lin, X.: Hierarchical interactive learning for a human-powered augmentation lower exoskeleton. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 257–263. IEEE, Stockholm (2016)

  15. Schaal, S.; Atkeson, C.G.: Learning control in robotics. IEEE Robot. Autom. Mag. 17(2), 20–29 (2010)

    Article  Google Scholar 

  16. Smart, W.D.: Making Reinforcement Learning Work on Real Robots. Brown University, Providence (2002)

    Google Scholar 

  17. Roveda, L.; Pallucca, G.; Pedrocchi, N.; Braghin, F.; Tosatti, L.M.: Iterative learning procedure with reinforcement for high-accuracy force tracking in robotized tasks. IEEE Trans. Ind. Inf. 14(4), 1753–1763 (2017)

    Article  Google Scholar 

  18. Rasmussen, C.E.; Williams, C.K.: Gaussian Processes for Machine Learning, vol. 38, pp. 715–719. The MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  19. Gijsberts, A.; Metta, G.: Real-time model learning using incremental sparse spectrum Gaussian process regression. Neural Netw. 41, 59–69 (2013)

    Article  Google Scholar 

  20. Nguyen-Tuong, D.; Seeger, M.; Peters, J.: Model learning with local Gaussian process regression. Adv. Robot. 23(15), 2015–2034 (2009)

    Article  Google Scholar 

  21. Ting, J.-A.; Vijayakumar, S.; Schaal, S.: Locally weighted regression for control. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 613–624. Springer, Boston (2011)

    Google Scholar 

  22. Atkeson, C.G.; Moore, A.W.; Schaal, S.: Locally weighted learning. Artif. Intell. Rev. 11, 11–73 (1997). https://doi.org/10.1023/A:1006559212014

    Article  Google Scholar 

  23. Meier, F.; Hennig, P.; Schaal, S.: Incremental local Gaussian regression. In: Advances in Neural Information Processing Systems, pp. 972–980 (2014)

  24. Sigaud, O.; Salaün, C.; Padois, V.: On-line regression algorithms for learning mechanical models of robots: a survey. Robot. Auton. Syst. 59(12), 1115–1129 (2011)

    Article  Google Scholar 

  25. Nguyen-Tuong, D.; Peters, J.: Model learning for robot control: a survey. Cognitive Process. 12(4), 319–340 (2011)

    Article  Google Scholar 

  26. Dinh, B.K.; Cappello, L.; Masia, L.: Localized extreme learning machine for online inverse dynamic model estimation in soft wearable exoskeleton. In: 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 580–587 (2016)

  27. Marongelli, E.N.; Thoroughman, K.A.: The advantage of flexible neuronal tunings in neural network models for motor learning. Front. Comput. Neurosci. 7, 100 (2013)

    Article  Google Scholar 

  28. Vijayakumar, S.; D’souza, A.; Schaal, S.: Incremental online learning in high dimensions. Neural Comput. 17(12), 2602–2634 (2005)

    Article  MathSciNet  Google Scholar 

  29. Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G.: Robotics: Modelling, Planning and Control. Springer, Berlin (2010)

    Google Scholar 

  30. Schilling, R.J.: Fundamentals of Robotics: Analysis and Control, vol. 629. Prentice Hall, Upper Saddle River (1990)

    Google Scholar 

  31. Cheah, C.-C.; Liaw, H.C.: Inverse Jacobian regulator with gravity compensation: stability and experiment. IEEE Trans. Robot. 21(4), 741–747 (2005)

    Article  Google Scholar 

  32. Swevers, J.; Verdonck, W.; De Schutter, J.: Dynamic model identification for industrial robots. IEEE Control Syst. Mag. 27(5), 58–71 (2007)

    Article  MathSciNet  Google Scholar 

  33. Vuong, N.D.; Ang Jr., M.H.: Dynamic model identification for industrial robots. Acta Polytech. Hung. 6(5), 51–68 (2009)

    Google Scholar 

  34. Gaz, C.; Flacco, F.; De Luca, A.: Identifying the dynamic model used by the KUKA LWR: a reverse engineering approach. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 1386–1392 (2014)

  35. Vijayakumar, S.: Locally weighted projection regression (LWPR)—a users manual. Department of Computer Science and Neuroscience, University of Southern California, Los Angeles, CA (2001)

  36. De La Cruz, J.S.; Kulić, D.; Owen, W.: Online incremental learning of inverse dynamics incorporating prior knowledge. In: International Conference on Autonomous and Intelligent Systems, pp. 167–176. Springer (2011)

Download references

Acknowledgements

This work was supported by research grants from the Higher Education Commission (HEC) of the Government of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Tufail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tufail, M., Anwar, S., Khan, Z.A. et al. Real-Time Impedance Control Based on Learned Inverse Dynamics. Arab J Sci Eng 45, 5043–5055 (2020). https://doi.org/10.1007/s13369-019-04334-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04334-3

Keywords

Navigation