Skip to main content

Advertisement

Log in

Application of Essential Oils as Green Corrosion Inhibitors

  • Review Article – Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This review reports the application of essential oils (EOs) as a green corrosion/biocorrosion inhibitor. The topics discussed are: (i) sources and composition of EOs, (ii) adsorption mechanism, (iii) anticorrosion effects of EOs on metal surfaces, (iv) electrochemical investigations, (v) antimicrobial activity of EOs on corrosion-producing bacteria and algae, (vi) synergetic effects of EOs, and (vii) economical aspect and application of inhibitors. Various aspects of biofilms are discussed to identify microbiologically influenced corrosion (MIC) and the characterization of microorganisms causing MIC. The studies indicate that EOs have the potential as eco-friendly corrosion inhibitors in both aggressive chemicals and biofilm environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Sharmin et al. [6]

Fig. 2

Note: Nu—nucleus, Cyt—cytoplasm. Adapted from Beale et al. [26]

Fig. 3

Adapted from Chen et al. [36]

Fig. 4
Fig. 5

Adapted from Rekkab et al. [15]

Fig. 6

Adapted from Rekkab et al. [15]

Fig. 7
Fig. 8

Adapted from Kakooei et al. [110]

Fig. 9

Adapted from Tugulea [143]

Fig. 10

Adapted from Tugulea [143]

Fig. 11

Adapted from Hossain et al. [147]

Similar content being viewed by others

Abbreviations

EOs:

Essential oils

PDP:

Potentiodynamic polarization

EIS:

Electrochemical impedance spectroscopy

R ct :

Charge-transfer resistance

R s :

Solution resistance

C dl :

Double-layer capacitance

MIC:

Microbial-induced corrosion

EPS:

Extracellular polymer agent

SPME:

Solid-phase microextraction

HS-SPME:

Head space solid-phase microextraction

GC:

Gas chromatography

GC–MS:

Gas chromatography–mass spectroscopy

SPME/GC–MS:

Solid-phase microextraction/gas chromatography–mass spectroscopy

[Fe2+]:

Concentration of iron ion

NMR:

Nuclear magnetic resonance spectroscopy

LC:

Liquid chromatography

SEM:

Scanning electron microscopy

XRD:

X-ray diffraction

TOF-MS:

Time-of-flight mass spectrometry

LC–MS:

Liquid chromatography–mass spectroscopy

PDMS:

Polydimethylsiloxane

PA:

Polyacrylate

PDMS/DVB:

Polydimethylsiloxane/divinylbenzene

CW/PEG:

Carbowax/polyethylene glycol

CW/TPR:

Carbowax/templated resin

CAR/PDMS:

Carboxen/polydimethylsiloxane

DVB/CAR/PDMS:

Divinylbenzene/carboxen/polydimethylsiloxane

References

  1. Rajeev, P.; Surendranathan, A.O.; Murthy, C.: Corrosion mitigation of the oil well steels using organic inhibitors—a review. J. Mater. Environ. Sci. 3, 856–869 (2012)

    Google Scholar 

  2. Rivera-Grau, L.M.; Casales, M.; Regla, I.; Ortega-Toledo, D.M.; Ascencio-Gutierrez, J.A.; Porcayo-Calderon, J.; Martinez-Gomez, L.: Effect of organic corrosion inhibitors on the corrosion performance of 1018 carbon steel in 3% NaCl solution. Int. J. Electrochem. Sci. 8, 2491–2503 (2013)

    Google Scholar 

  3. Mann, C.A.; Lauer, B.E.; Hultin, C.T.: Organic inhibitors of corrosion aliphatic amines. Ind. Eng. Chem. 28, 159–163 (1936)

    Article  Google Scholar 

  4. Al-Sabbagh, A.M.; Osman, M.M.; Omar, A.M.A.; El-Gamal, I.M.: Organic corrosion inhibitors for steel pipelines in oilfields. Anticorros. Meth. Mat. 43, 11–16 (1996)

    Article  Google Scholar 

  5. Liu, S.; Gu, L.; Zhao, H.; Chen, J.; Yu, H.: Corrosion resistance of graphene-reinforced waterborne epoxy coatings. J. Mater. Sci. Technol. 32, 425–431 (2016)

    Article  Google Scholar 

  6. Sharmin, E.; Ahmad, S.; Zafar F.: Renewable resources in corrosion resistance. Chap 20. Under Book “Corrosion Resistance”. ISBN 978-953-51-0467-4 (2012)

  7. Znini, M.; Majidi, L.; Bouyanzer, A.; Paolini, J.; Desjobert, J.M.; Costa, J.; Hammouti, B.: Essential oil of Salvia aucheri mesatlantica as a green inhibitor for the corrosion of steel in 0.5 M H2SO4. Arab. J. Chem. 5, 467–474 (2012)

    Article  Google Scholar 

  8. Manssouri, M.; El-Ouadi, Y.; Znini, M.; Costa, J.; Bouyanzer, A.; Desjobert, J.M.; Majidi, L.: Adsorption proprieties and inhibition of mild steel corrosion in HCl solution by the essential oil from fruit of Moroccan Ammodaucus leucotrichus. J. Mater. Environ. Sci. 6, 631–646 (2015)

    Google Scholar 

  9. Andreani, S.; De Cian, M.C.; Paolini, J.; Desjobert, J.M.; Costa, J.; Muselli, A.: Chemical variability and antioxidant activity of Limbarda crithmoides L. essential oil from Corsica. Chem. Biodivers. 10, 2061–2077 (2013)

    Article  Google Scholar 

  10. Darriet, F.; Znini, M.; Majidi, L.; Muselli, A.; Hammouti, B.; Bouyanzer, A.; Costa, J.: Evaluation of Eryngium maritimum essential oil as environmentally friendly corrosion inhibitor for mild steel in hydrochloric acid solution. Int. J. Electrochem. Sci. 8, 4328–4345 (2013)

    Google Scholar 

  11. Hmamou, D.B.; Salghi, R.; Zarrouk, A.; Zarrouk, H.; Errami, M.; Hammouti, B.; Afia, L.; Bazzi, L.: Adsorption and corrosion inhibition of mild steel in hydrochloric acid solution by Verbena essential oil. Res. Chem. Int. 39, 973–989 (2013)

    Article  Google Scholar 

  12. Gualdron, A.F.; Becerra, E.N.; Pena, D.Y.; Gutierrez, J.C.; Becerra, H.Q.: Inhibitory effect of Eucalyptus and Lippia Alba essential oils on the corrosion of mild steel in hydrochloric acid. J. Mater. Environ. Sci. 4, 143–158 (2013)

    Google Scholar 

  13. Nabah, R.; Lgaz, H.; Zarrok, H.; Larouj, M.; Benhiba, F.; Ourrak, K.; Cherkaoui, M.; Zarrouk, A.; Touir, R.; Oudda, H.: Anti-corrosion properties of Niaouli essential oil for tinplate in 3% NaCl medium. J. Mater. Environ. Sci. 8(10), 3730–3739 (2017)

    Google Scholar 

  14. Boumhara, K.; Tabyaoui, M.; Jama, C.; Bentiss, F.: Artemisia Mesatlantica essential oil as green inhibitor for carbon steel corrosion in 1 M HCl solution: electrochemical and XPS investigations. J. Ind. Eng. Chem. 29, 146–155 (2015)

    Article  Google Scholar 

  15. Rekkab, S.; Zarrok, H.; Salghi, R.; Zarrouk, A.; Bazzi, L.; Hammouti, B.; Kabouche, Z.: Green corrosion inhibitor from essential oil of Eucalyptus globulus (Myrtaceae) for C38 steel in sulfuric acid solution. J. Mater. Environ. Sci. 3, 613–627 (2012)

    Google Scholar 

  16. López, P.; Sánchez, C.; Batlle, R.; Nerín, C.: Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms. J. Agric. Food Chem. 55, 4348–4356 (2007)

    Article  Google Scholar 

  17. Rahman, M.S.A.; Thangaraj, S.; Salique, S.M.; Khan, K.F.; Natheer, S.E.: Antimicrobial and biochemical analysis of some spices extract against food spoilage pathogens. Int. J. Food Saf. 12, 71–75 (2010)

    Google Scholar 

  18. Siddiqui, S.A.; Islam, R.; Jamal, A.H.M.; Parvin, T.; Rahman, A.: Chemical composition and antifungal properties of the essential oil and various extracts of Mikania scandens (L.) Willd. Arab. J. Chem. 10, 2170–2174 (2017)

    Article  Google Scholar 

  19. Rahman, M.M.; Sultana, T.; Ali, M.Y.; Rahman, M.M.; Al-Reza, S.M.; Rahman, A.: Chemical composition and antibacterial activity of the essential oil and various extracts from Cassia sophera L. against Bacillus sp. from soil. Arab. J. Chem. 10, 2132–2137 (2017)

    Article  Google Scholar 

  20. Vitali, L.A.; Beghelli, D.; Nya, P.C.B.; Bistoni, O.; Cappellacci, L.; Damiano, S.; Lupidi, G.; Maggi, F.; Orsomando, G.; Papa, F.; Petrelli, D.; Petrelli, R.; Quassinti, L.; Sorci, L.; Zadeh, M.M.; Bramucci, M.: Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arab. J. Chem. 9, 775–786 (2016)

    Article  Google Scholar 

  21. Cecchini, C.; Silvi, S.; Cresci, A.; Piciotti, A.; Caprioli, G.; Papa, F.; Sagratini, G.; Vittori, S.; Maggi, F.: Antimicrobial efficacy of Achillea ligustica All. (Asteraceae) essential oils against reference and isolated oral microorganisms. Chem. Biodivers. 9(1), 12–24 (2012)

    Article  Google Scholar 

  22. Benelli, G.; Pavela, R.; Iannarelli, R.; Petrelli, R.; Cappellacci, L.; Cianfaglione, K.; Afshar, F.H.; Nicoletti, M.; Canale, A.; Maggi, F.: Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: larvicidal effectiveness on the filariasis vector Culex quinquefasciatus SayIndus. Crops Prod. 96, 186–195 (2017)

    Article  Google Scholar 

  23. Tabari, M.A.; Youssefi, M.R.; Maggi, F.; Benelli, G.: Toxic and repellent activity of selected monoterpenoids (thymol, carvacrol and linalool) against the castor bean tick, Ixodes ricinus (Acari: Ixodidae). Vet. Parasitol. 245, 86–91 (2017)

    Article  Google Scholar 

  24. Immanuel, O.M.; Abu, G.O.; Stanley, H.O.: Inhibition of biogenic sulphide production and biocorrosion of carbon steel by sulphate-reducing bacteria using Ocimum gratissimum essential oil. J. Adv. Biol. Biotechnol. 10(2), 1–12 (2016)

    Article  Google Scholar 

  25. Korenblum, E.; Goulart, F.R.; Rodrigues, I.; Abreu, F.; Lins, U.; Alves, P.B.; Blank, A.F.; Valoni, E.; Sebastián, G.V.; Alviano, D.S.; Alviano, C.S.; Seldin, L.: Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral. AMB Express 3, 44–52 (2013)

    Article  Google Scholar 

  26. Beale, D.J.; Dunn, M.S.; Marney, D.: Application of GC–MS metabolic profiling to blue-green water from microbial influenced corrosion in copper pipes. Corros. Sci. 52, 3140–3145 (2010)

    Article  Google Scholar 

  27. Znini, M.; Cristofari, G.; Majidi, L.; Ansari, A.; Bouyanzer, A.; Paolini, J.; Costa, J.; Hammouti, B.: Green Approach to corrosion inhibition of mild steel by essential oil leaves of Asteriscus Graveolens (Forssk.) in sulphuric acid medium. Int. J. Electrochem. Sci. 7, 3959–3981 (2012)

    Google Scholar 

  28. Chang, S.T.; Chen, P.E.; Chang, S.C.: Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. J. Ethnopharmacol. 77, 123–127 (2001)

    Article  Google Scholar 

  29. Rodriguez, A.; Nerin, C.; Batlle, R.: New cinnamon-based active paper packaging against Rhizopusstolonifer food spoilage. J. Agric. Food Chem. 56, 6364–6369 (2008)

    Article  Google Scholar 

  30. Gende, L.B.; Floris, I.; Fritz, R.; Eguaras, M.J.: Antimicrobial activity of cinnamon (Cinnamomum zeylanicum) essential oil and its main components against Paenibacillus larvae from Argentine. Bull. Insect 61, 1–4 (2008)

    Google Scholar 

  31. Domadia, P.; Swarup, S.; Bhunia, A.; Sivaraman, J.; Dasgupta, D.: Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde. Biochem. Pharmacol. 74, 831–840 (2007)

    Article  Google Scholar 

  32. Medina, A.L.; Lucero, M.E.; Holguin, F.O.; Estell, R.E.; Posakony, J.J.; Simon, J.; O’Connell, M.A.: Composition and antimicrobial activity of Anemopsis californica leaf oil. J. Agric. Food Chem. 53, 8694–8698 (2005)

    Article  Google Scholar 

  33. Growcock, F.B.; Frenier, W.W.: Kinetics of steel corrosion in hydrochloric acid inhibited with trans-cinnamaldehyde. J. Electrochem. Soc. 135, 817–823 (1988)

    Article  Google Scholar 

  34. Cabello, G.; Funkhouser, G.P.; Cassidy, J.; Kiser, C.E.; Lane, J.; Cuesta, A.: CO and trans-cinnamaldehyde as corrosion inhibitors of I825, L80-13Cr and N80 alloys in concentrated HCl solutions at high pressure and temperature. Electrochim. Acta 97, 1–9 (2013)

    Article  Google Scholar 

  35. Hossain, S.M.Z.; Al-Shater, A.; Kareem, S.A.R.: Cinnamaldehyde as a green inhibitor in mitigating AISI 1015 carbon steel corrosion in HCl. Arab. J. Sci. Eng. (2019). https://doi.org/10.1007/s13369-019-03793-y

    Article  Google Scholar 

  36. Chen, G.; Zhang, M.; Zhao, J.; Zhou, R.; Meng, Z.; Zhang, J.: Investigation of ginkgo biloba leave extracts as corrosion and oil field microorganism inhibitors. Chem. Cent. J. 7, 83–89 (2013)

    Article  Google Scholar 

  37. Aboia, O.K.; James, A.O.: The effects of aloe vera extract on corrosion and kinetics of corrosion process of zinc in HCl solution. Corros. Sci. 52(2), 661–664 (2010)

    Article  Google Scholar 

  38. Lebrini, M.; Robert, F.; Lecante, A.; Roos, C.: Corrosion inhibition of C38 steel in 1 M hydrochloric acid medium by alkaloids extract from Oxandra asbeckii plant. Corros. Sci. 53(2), 687–695 (2011)

    Article  Google Scholar 

  39. Satapathy, A.K.; Gunasekaran, G.; Sahoo, S.C.; Amit, K.; Rodrigues, P.V.: Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution. Corros. Sci. 51(12), 2848–2856 (2009)

    Article  Google Scholar 

  40. Obot, I.B.; Obi-Egbedi, N.O.: Ginseng root: a new efficient and effective eco-friendly corrosion inhibitor for aluminium alloy of type AA 1060 in hydrochloric acid solution. Int. J. Electrochem. Sci. 4(9), 1277–1288 (2009)

    Google Scholar 

  41. Okafor, P.C.; Ebenso, E.E.; Ekbe, U.J.: Azadirachta indica extracts as corrosion inhibitor for mild steel in acidic medium. Int. J. Electrochem. Sci. 5(7), 978–993 (2010)

    Google Scholar 

  42. Saratha, R.; Vasudha, V.G.: Emblica Officinalis (Indian Gooseberry) leaves extract as corrosion inhibitor for mild steel in 1 N HCl medium. Eur. J. Chem. 7(3), 677–684 (2010)

    Google Scholar 

  43. Okafor, P.C.; Ikpi, M.E.; Uwah, I.E.; Ebenso, E.E.; Ekpe, U.J.; Umoren, S.A.: Inhibitory action of Phyllanthus amarus extracts on the corrosion of mild steel in acidic media. Corros. Sci. 50(8), 2310–2317 (2008)

    Article  Google Scholar 

  44. Sivaraju, M.; Kannan, K.: Inhibitive properties of plant extract (Acalypha indica L.) on mild steel corrosion in 1 N phosphoric acid. Int. J. Chem. Technol. Res. 2(2), 1243–1253 (2010)

    Google Scholar 

  45. Raja, P.B.; Sethuraman, M.G.: Studies on the inhibitive effect of Datura stramonium extract on the acid corrosion of mild steel. Surf. Rev. Lett. 14(6), 1157–1164 (2007)

    Article  Google Scholar 

  46. Emranuzzaman, T.; Kumar, T.; Vishwanatham, S.; Udayabhanu, G.: Synergistic effects of formaldehyde and alcoholic extract of plant leaves for protection of N80 steel in 15% HCl. Corros. Eng. Sci. Technol. 39(4), 327–332 (2004)

    Article  Google Scholar 

  47. Abdel-Graber, A.M.; Abd-El-Nabey, B.A.; Sidahmed, I.M.; El-Zayady, A.M.; Saadawy, M.: Effect of temperature on inhibitive action of Damsissa extract on the corrosion of steel in acidic media. Corrosion 62(4), 239–299 (2006)

    Google Scholar 

  48. Badiea, A.M.; Mohana, K.N.: Corrosion mechanism of low-carbon steel in industrial water and adsorption thermodynamics in the presence of some plant extracts. J. Mater. Eng. Perform. 18(9), 1264–1271 (2009)

    Article  Google Scholar 

  49. Abdel-Graber, A.M.; Abd-El-Nabey, B.A.; Sidahmed, I.M.; El-Zayady, A.M.; Saadawy, M.: Inhibitive action of some plant extracts on the corrosion of steel in acidic media. Corros. Sci. 48(9), 2765–2779 (2006)

    Article  Google Scholar 

  50. Martins, A.P.; Salgueiro, L.; Vila, R.; Tomi, F.; Cañigueral, S.; Casanova, J.; Cunha, A.P.; Adzetc, T.: Essential oils from four Piper species. Phytochemistry 49(7), 2019 (1998)

    Article  Google Scholar 

  51. Ostovari, A.; Hoseinieh, S.M.; Peikari, M.; Shadizadeh, S.R.; Hashemi, S.J.: Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: a comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, α-d-Glucose and Tannic acid). Corros. Sci. 51(9), 1935–1949 (2009)

    Article  Google Scholar 

  52. Oyedeji, O.; Ekundayo, O.; Wilfried, A.: Essential oil composition of Lawsonia inermis L. leaves from Nigeria. J. Essent. Oil Res. 17(4), 403–404 (2005)

    Article  Google Scholar 

  53. Al-Yahya, M.A.; El-Feraly, F.S.; Dunbar, D.C.; Muhammad, I.: neo-Clerodane diterpenoids from Teucrium oliverianum and structure revision of teucrolin E. Phytochemistry 59, 409–414 (2002)

    Article  Google Scholar 

  54. Barakat, H.H.; El-Mousallamy, A.M.; Souleman, A.M.; Awadalla, S.: Flavonoids of Ochradenus baccatus. Phytochemistry 30, 3777–3779 (1991)

    Article  Google Scholar 

  55. Khan, M.; Abdullah, M.M.S.; Mousa, A.A.; Hamad, Z.A.: Chemical composition of vegetative parts and flowers essential oils of wild Anvillea garcinii grown in Saudi Arabia. Rec. Nat. Prod. 10(2), 251–256 (2016)

    Google Scholar 

  56. Onuegbu, T.U.; Umoh, E.T.; Onuigbo, U.A.: Eupatorium odoratus as eco-friendly green corrosion inhibitor of mild steel in sulphuric acid. Int. J. Sci. Technol. Res. 2, 4–8 (2013)

    Google Scholar 

  57. Kazmi, M.H.; Malik, A.; Hameed, S.; Akhtar, N.; Ali, S.N.: An anthraquinone derivative from Cassia italica. Phytochemistry 36(3), 761–763 (1994)

    Article  Google Scholar 

  58. Dev, N.; Das, A.K.; Hossain, M.A.; Rahman, S.: Chemical compositions of different extracts of Ocimum basilicum leaves. J. Sci. Res. 3(1), 197–206 (2011)

    Article  Google Scholar 

  59. Marco, J.A.; Sanz-Cervera, J.F.; Sancenon, F.; Jakupovic, J.; Rustaiyant, A.; Mohamadit, F.: Oplopanone derivatives monoterpene glycosides from Artemisia sieberi. Phytochemistry 34(4), 1061–1065 (1993)

    Article  Google Scholar 

  60. Bahrami, G.; Soltanib, R.; Sajjadi, S.; Kananid, M.; Naderie, R.; Ghiasvand, N.; Shokoohinia, Y.: Essential oil composition of Ferula Assa-Foetida L. fruits from Western Iran. J. Rep. Pharm. Sci. 2(2), 90–97 (2013)

    Google Scholar 

  61. Ziarati, P.; Asgarpanah, J.; Kianifard, M.: The essential oil composition of Carthamus tinctorius L. flowers growing in Iran. Afr. J. Biotechnol. 11, 12921–12924 (2012)

    Google Scholar 

  62. Sonibare, O.O.; Effiong, I.; Oladosu, I.A.: Ekundayo, O: chemical constituents and antimicrobial activity of the essential oil of vitex doniana sweet (verbernaceae). J. Essent. Oil Bear. Plant 12, 185–189 (2009)

    Article  Google Scholar 

  63. Kumar, K.P.V.; Pillai, M.; Thusnavis, G.R.: Seed extract of Psidium guajava as ecofriendly corrosion inhibitor for carbon steel in hydrochloric acid medium. J. Mater. Sci. Technol. 27, 1143–1149 (2011)

    Article  Google Scholar 

  64. Alvarez, P.E.; Fiori-Bimbi, V.; Neske, A.; Brandán, S.A.; Gervasi, C.A.: Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution. J. Ind. Eng. Chem. 25, 92–99 (2018)

    Article  Google Scholar 

  65. Khadraoui, A.; Khelifa, A.; Hadjmeliani, M.; Mehdaoui, R.; Hachama, K.; Tidu, A.; Azari, Z.; Obot, I.B.; Zarrouk, A.: Extraction, characterization and anti-corrosion activity of Mentha pulegium oil: weight loss, electrochemical, thermodynamic and surface studies. J. Mol. Liq. 216, 724–731 (2016)

    Article  Google Scholar 

  66. Khadraoui, A.; Khelifa, A.; Hachama, K.; Mehdaoui, R.: Thymus algeriensis extract as a new eco-friendly corrosion inhibitor for 2024 aluminium alloy in 1 M HCl medium. J. Mol. Liq. 214, 293–297 (2016)

    Article  Google Scholar 

  67. Chemat, S.; Cherfouh, R.; Meklati, B.Y.; Belanteur, K.: Composition and microbial activity of thyme (Thymus algeriensis genuinus) essential oil. J. Essent. Oil Res. 24, 5–12 (2012)

    Article  Google Scholar 

  68. Rose, K.; Kim, B.S.; Rajagopal, K.; Arumugam, S.; Devarayan, K.: Surface protection of steel in acid medium by Tabernaemontana divaricata extract: physicochemical evidence for adsorption of inhibitor. J. Mol. Liq. 214, 111–116 (2016)

    Article  Google Scholar 

  69. Behpour, M.; Ghoreishi, S.M.; Kashani, M.K.; Soltani, N.: Inhibition of 304 stainless steel corrosion in acidic solution by Ferula gumosa (galbanum) extract. Mater. Corros. 60, 895–898 (2009)

    Article  Google Scholar 

  70. Raja, P.B.; Sethuraman, M.G.: Strychnos nux-vomica an eco-friendly corrosion inhibitor for mild steel in 1 M sulfuric acid medium. Mater. Corros. 60, 22–28 (2009)

    Article  Google Scholar 

  71. Swaroop, B.S.; Victoria, S.N.; Manivannan, R.: Azadirachta indica leaves extract as inhibitor for microbial corrosion of copper by Arthrobacter sulfureus in neutral pH conditions—a remedy to blue green water problem. J. Taiwan Inst. Chem. Eng. 64, 269–278 (2016)

    Article  Google Scholar 

  72. Singh, M.R.; Gupta, P.; Gupta, K.: The litchi (Litchi Chinensis) peels extract as a potential green inhibitor in prevention of corrosion of mild steel in 0.5 M H2SO4 solution. Arab J Chem (2015). https://doi.org/10.1016/j.arabjc.2015.01.002

    Article  Google Scholar 

  73. Jerbi, A.; Derbali, A.; Elfeki, A.; Kammoun, M.: Essential oil composition and biological activities of Eucalyptus globulus leaves extracts from Tunisia. J. Essent. Oil Bear. Plants 20, 438–448 (2017)

    Article  Google Scholar 

  74. Ouachikh, O.; Bouyanzer, A.; Bouklah, M.; Desjobert, J.M.; Costa, J.; Hammouti, B.; Majidi, L.: Application of essential oil of Artemisia Herba Alba as green corrosion inhibitor for steel in 0.5 M H2SO4. Surf. Rev. Lett. 16, 49–54 (2009)

    Article  Google Scholar 

  75. Znini, M.; Bouklah, M.; Majidi, L.; Kharchouf, S.; Aouniti, A.; Bouyanzer, A.; Hammouti, B.; Costa, J.; Al-Deyab, S.S.: Chemical composition and inhibitory effect of Mentha spicata essential oil on the corrosion of steel in molar hydrochloric acid. Int. J. Electrochem. Sci. 6, 691–704 (2011)

    Google Scholar 

  76. Znini, M.; Majidi, L.; Laghchimi, A.; Paolini, J.; Hammouti, B.; Costa, J.; Bouyanzer, A.; Al-Deyab, S.S.: Chemical composition and anticorrosive activity of Warionia saharea essential oil against the corrosion of mild steel in 0.5 M H2SO4. Int. J. Electrochem. Sci. 6, 5940–5955 (2011)

    Google Scholar 

  77. Cristofari, G.; Znini, M.; Majidi, L.; Costa, J.; Hammouti, B.; Paolini, J.: Helichrysum italicum subsp. italicum essential oil as environmentally friendly inhibitor on the corrosion of mild steel in hydrochloric acid. Int. J. Electrochem. Sci. 7, 9024–9041 (2012)

    Google Scholar 

  78. Lahhit, N.; Bouyanzer, A.; Desjobert, J.M.; Hammouti, B.; Salghi, R.; Costa, J.; Jama, C.; Bentiss, F.; Majidi, L.: Fennel (Foeniculum Vulgare) essential oil as green corrosion inhibitor of carbon steel in hydrochloric acid solution. Port. Electrochim. Acta 29, 127–138 (2011)

    Article  Google Scholar 

  79. Mounir, F.; Issami, S.E.; Bazzi, L.; Salghi, R.; Bammou, L.; Bazzi, L.; Eddine, A.C.; Jbara, O.: Copper corrosion behavior in phosphoric acid containing chloride and its inhibition by Artemisia oil. Int. J. Res. Rev. Appl. Sci. 13, 574–587 (2012)

    Google Scholar 

  80. Awad, M.I.: Eco friendly corrosion inhibitors: inhibitive action of quinine for corrosion of low carbon steel in 1 M HCl. J. Appl. Electrochem. 36, 1163–1168 (2006)

    Article  Google Scholar 

  81. Popova, A.: Temperature effect on mild steel corrosion in acid media in presence of azoles. Corros. Sci. 49, 2144–2158 (2007)

    Article  Google Scholar 

  82. Dehri, I.; Ozcan, M.: The effect of temperature on the corrosion of mild steel in acidic media in the presence of some sulphur-containing organic compounds. Mater. Chem. Phys. 98, 316–323 (2006)

    Article  Google Scholar 

  83. Obot, I.B.; Obi-Egbedi, N.O.; Umoren, S.A.: Antifungal drugs as corrosion inhibitors for aluminium in 0.1 M HCl. Corros. Sci. 51(8), 1868–1875 (2009)

    Article  Google Scholar 

  84. Guan, N.M.; Xueming, L.; Fei, L.: Synergistic inhibition between o-phenanthroline and chloride ion on cold rolled steel corrosion in phosphoric acid. Mater. Chem. Phys. 86, 59–68 (2004)

    Article  Google Scholar 

  85. Noor, E.A.; Al-Moubaraki, A.H.: Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4-styryl pyridinium iodides/hydrochloric acid systems. Mater. Chem. Phys. 110, 145–154 (2008)

    Article  Google Scholar 

  86. Samkarapapaavinasam, S.; Ahmed, M.F.: Benzenethiols as inhibitors for the corrosion of copper. J. Appl. Electrochem. 22, 390–395 (1992)

    Article  Google Scholar 

  87. Beech, I.B.; Sunner, J.A.; Hiraoka, K.: Microbe-surface interactions in biofouling and biocorrosion processes. Int. Microbiol. 8, 157–168 (2005)

    Google Scholar 

  88. Beech, I.B.; Sunner, J.A.: Biocorrosion towards understanding interactions between biofilms and metals. Curr. Opinion Biotechnol. 15, 181–186 (2004)

    Article  Google Scholar 

  89. Kjellerup, B.V.; Olesen, B.H.; Frølund, B.; Nielsen, P.H.: Potential of biocorrosion in Danish district heatings sytems. Mater. Corros. 55, 543–547 (2004)

    Article  Google Scholar 

  90. Xu, D.; Zhou, E.; Zhao, Y.; Li, H.; Liu, Z.; Zhang, D.; Yang, C.; Lin, H.; Li, X.; Yang, K.: Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms. J. Mater. Sci. Technol. 34, 1325–1336 (2018)

    Article  Google Scholar 

  91. Enning, D.; Garrelfs, J.: Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl. Environ. Microbiol. 80, 1226–1236 (2014)

    Article  Google Scholar 

  92. Guan, F.; Zhai, X.; Duan, J.; Zhang, M.; Hou, B.: Influence of sulfate-reducing bacteria on the corrosion behavior of high strength steel EQ70 under cathodic polarization. PLoS One (2016). https://doi.org/10.1371/journal.pone.0162315

    Article  Google Scholar 

  93. Rao, T.S.; Sairam, T.N.; Viswanathan, B.; Nair, K.V.K.: Carbon steel corrosion by iron oxidising and sulphate reducing bacteria in a freshwater cooling system. Corros. Sci. 42, 1417–1431 (2000)

    Article  Google Scholar 

  94. Venzlaff, H.; Enning, D.; Srinivasan, J.; Mayrhofer, K.; Hassel, A.; Widdel, F.: Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros. Sci. 66, 88–96 (2013)

    Article  Google Scholar 

  95. Wikie, A.J.; Datsenko, I.; Vera, M.; Sand, W.: Impact of desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment. Bioelectrochemistry 97, 52–60 (2014)

    Article  Google Scholar 

  96. Xu, D.; Li, Y.; Song, F.; Gu, T.: Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corros. Sci. 77, 385–390 (2013)

    Article  Google Scholar 

  97. Lee, J.S.; McBeth, J.M.; Ray, R.I.; Little, B.J.; Emerson, D.: Iron cycling at corroding carbon steel surfaces. Biofouling 29, 1243–1252 (2013)

    Article  Google Scholar 

  98. McBeth, J.M.; Little, B.J.; Ray, R.I.; Farrar, K.M.; Emerson, D.: Neutrophilic iron-oxidizing “Zetaproteobacteria” and mild steel corrosion in nearshore marine environments. Appl. Environ. Microbiol. 77, 1405–1412 (2011)

    Article  Google Scholar 

  99. Lamenti, G.; Tiano, P.; Tomaselli, L.; Lamenti, G.; Tiano, P.; Tomaselli, L.: Biodeterioration of ornamental marble statues in the Boboli gardens (Florence, Italy). J Appl. Phycol. 12, 427–433 (2000)

    Article  Google Scholar 

  100. Li, S.; Zhang, Y.; Liu, J.; Yu, M.: Corrosion behavior of steel A3 influenced by Thiobacillus ferrooxidans. Acta Phys.-Chim. Sin. 24, 1553–1557 (2008)

    Article  Google Scholar 

  101. Juzeliunas, E.; Ramanauskas, R.; Lugauskas, A.; Leinartas, K.; Samuleviciene, M.; Sudavicius, A.: Microbially influenced corrosion of zinc and aluminium-two-year-subjection to influence of Aspegillus niger. Corros. Sci. 49, 4098–4112 (2007)

    Article  Google Scholar 

  102. Little, B.; Staehle, R.; Davis, R.: Fungal influenced corrosion of post-tensioned cables. Biodegradation 47, 71–77 (2001)

    Article  Google Scholar 

  103. Usher, K.M.; Kaksonen, A.H.; MacLeod, I.D.: Marine rust tubercles harbour iron corroding archaea and sulphate reducing bacteria. Corros. Sci. 83, 189–197 (2014)

    Article  Google Scholar 

  104. Stadler, R.; Wei, L.; Fubeth, W.; Grooters, M.; Kuklinski, A.: Influence of bacterial exopolymers on cell adhesion of Desulfovibrio vulgaris on high alloyed steel: corrosion inhibition by extracellular polymeric substances (EPS). Mater. Corros. 61, 1008–1016 (2010)

    Article  Google Scholar 

  105. Beech, I.B.; Hanjagsit, L.; Kalaji, M.; Neal, A.; Zinkevich, V.: Chemical and structural characterization of exopolymers produced by Pseudomonas sp. NCIMB 2021 cells in continuous culture. Microbiology 145, 1491–1497 (1999)

    Article  Google Scholar 

  106. Paul, J.H.; Jeffrey, W.H.: Evidence for separate adhesion mechanisms for hydrophilic and hydrophobic surfaces in Vibrio proteolytica. Appl. Environ. Microbiol. 50, 431–437 (1985)

    Article  Google Scholar 

  107. Liu, H.; Xu, D.; Dao, A.Q.; Zhang, G.; Lv, Y.; Liu, H.: Study of corrosion behavior and mechanism of carbon steel in the presence of Chlorella vulgaris. Corros. Sci. 101, 84–93 (2015)

    Article  Google Scholar 

  108. Chiovitti, A.; Higgins, J.M.; Harper, R.E.; Wetherbee, R.; Bacic, A.: The complex polysaccharides of the raphid diatom Pinnularia viridis (Bacillariophyceae). J. Phycol. 39, 543–554 (2003)

    Article  Google Scholar 

  109. Wigglesworth-Cooksey, B.; Cooksey, K.E.: Use of fluorophore-conjugated lectins to study cell-cell interactions in model marine biofilms. Appl. Environ. Microbiol. 71, 428–435 (2005)

    Article  Google Scholar 

  110. Kakooei, S.; Ismail, M.C.; Ariwahjoedi, B.: Mechanisms of microbiologically influenced corrosion: a review. World Appl. Sci. J. 17(4), 524–531 (2012)

    Google Scholar 

  111. Videla, H.A.; Herrera, L.K.: Microbiologically influenced corrosion: looking to the future. Int. Microbiol. 8(3), 169–180 (2005)

    Google Scholar 

  112. Lopes, F.A.; Morin, P.; Oliveira, R.; Melo, L.F.: Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism. J. Appl. Microbiol. 101, 1087–1095 (2006)

    Article  Google Scholar 

  113. San, N.O.; Nazir, H.; Dönmez, G.: Evaluation of microbiologically influenced corrosion inhibition on Ni–Co alloy coatings by Aeromonas salmonicida and Clavibacter michiganensis. Corros. Sci. 65, 113–118 (2012)

    Article  Google Scholar 

  114. Kamal, C.; Sethuraman, M.G.: Kappaphycus alvarezii—a marine red alga as a green inhibitor for acid corrosion of mild steel. Mater. Corros. 65, 846–854 (2014)

    Article  Google Scholar 

  115. Lu, F.; Ding, Y.C.; Ye, X.Q.; Ding, Y.T.: Antibacterial effect of cinnamon oil combined with thyme or clove oil. Agric. Sci. China 10, 1482–1487 (2011)

    Article  Google Scholar 

  116. Khorshidian, N.; Yousefi, M.; Khanniri, E.; Mortazavian, A.M.: Potential application of essential oils as antimicrobial preservatives in cheese. Innov. Food Sci. Emerg. Technol. 45, 62–72 (2018)

    Article  Google Scholar 

  117. Patra, J.K.; Baek, K.H.: Antibacterial activity and action mechanism of the essential oil from Enteromorpha linza L. against foodborne pathogenic bacteria. Molecules 21, 388–399 (2016)

    Article  Google Scholar 

  118. Ambrosio, C.M.S.; de Alencar, S.M.; de Sousa, R.L.M.; Moreno, A.M.; Da Gloria, E.M.: Antimicrobial activity of several essential oils on pathogenic and beneficial bacteria. Ind. Crops Prod. 97, 128–136 (2017)

    Article  Google Scholar 

  119. Gharibzahedi, S.M.T.; Mohammadnabi, S.: Characterizing the novel surfactant-stabilized nanoemulsions of stinging nettle essential oil: thermal behaviour, storage stability, antimicrobial activity and bioaccessibility. J. Mol. Liq. 224, 1332–1340 (2016)

    Article  Google Scholar 

  120. Honório, V.G.; Bezerra, J.; Souza, G.T.; Carvalho, R.J.: Inhibition of Staphylococcus aureus cocktail using the synergies of oregano and rosemary essential oils or carvacrol and 1,8-cineole. Front. Microbiol. (2015). https://doi.org/10.3389/fmicb.2015.01223

    Article  Google Scholar 

  121. Stojković, D.; Glamočlija, J.; Ćirić, A.; Nikolić, M.; Ristić, M.; Šiljegović, J.: Investigation on antibacterial synergism of Origanum vulgare and Thymus vulgaris essential oils. Arch. Biol. Sci. 65, 639–643 (2013)

    Article  Google Scholar 

  122. Bassolé, I.H.N.; Juliani, H.R.: Essential oils in combination and their antimicrobial properties. Molecules 17, 3989–4006 (2012)

    Article  Google Scholar 

  123. Ghosh, I.N.; Patil, S.D.; Sharma, T.K.; Srivastava, S.K.; Pathania, R.; Navani, N.K.: Synergistic action of cinnamaldehyde with silver nanoparticles against spore-forming bacteria: a case for judicious use of silver nanoparticles for antibacterial applications. Int. J. Nanomed. 8, 4721–4731 (2013)

    Google Scholar 

  124. Li, P.; Li, J.; Wu, C.; Wu, Q.; Li, J.: Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16, 1912–1916 (2005)

    Article  Google Scholar 

  125. Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R.: Biogenic synthesis of silver nanoparticles and their synergestic effect with antibiotics: a study against gram positive and gram negative bacteria. Nanomed. Nanotechnol. Biol. Med. 6, 103–109 (2010)

    Article  Google Scholar 

  126. Carneiro, S.; Villas-Bôas, S.G.; Ferreira, E.C.; Rocha, I.: Metabolic footprint analysis of recombinant Escherichia coli strains during fed-batch fermentations. Mol. BioSyst. 7, 899–910 (2011)

    Article  Google Scholar 

  127. Favre, L.; Ortalo-Magné, A.; Greff, S.; Pérez, T.; Thomas, O.P.; Martin, J.C.; Culioli, G.: Discrimination of four marine biofilm-forming bacteria by LC-MS metabolomics and influence of culture parameters. J. Proteome Res. 16, 1962–1975 (2017)

    Article  Google Scholar 

  128. Jozefczuk, S.; Klie, S.; Catchpole, G.; Szymanski, J.; Cuadros-Inostroza, A.; Steinhauser, D.; Selbig, J.; Willmitzer, L.: Metabolomic and transcriptomic stress response of Escherichia coli. Mol. Syst. Biol. 6, 364–381 (2010)

    Article  Google Scholar 

  129. Zang, L.; Frenkel, R.; Simeone, J.; Lanan, M.; Byers, M.; Lyubarskaya, Y.: Metabolomics profiling of cell culture media leading to the identification of riboflavin photosensitized degradation of tryptophan causing slow growth in cell culture. Anal. Chem. 83, 5422–5430 (2011)

    Article  Google Scholar 

  130. Dietmair, S.; Timmins, N.E.; Gray, P.P.; Nielsen, L.K.; Krömer, J.O.: Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Anal. Biochem. 404, 155–164 (2010)

    Article  Google Scholar 

  131. Sellick, C.A.; Hansen, R.; Stephens, G.M.; Goodacre, R.; Dickson, A.J.: Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat. Protoc. 6, 1241–1249 (2011)

    Article  Google Scholar 

  132. Beale, D.J.; Dunn, M.S.; Morrison, P.D.; Porter, N.A.; Marlow, D.R.: Characterisation of bulk water samples from copper pipes undergoing microbially influenced corrosion by diagnostic metabolomic profiling. Corros. Sci. 55, 272–279 (2012)

    Article  Google Scholar 

  133. Ye, Y.; Zhang, L.; Hao, F.; Zhang, J.; Wang, Y.; Tang, H.: Global metabolomic responses of Escherichia coli to heat stress. J. Proteome Res. 11, 2559–2566 (2012)

    Article  Google Scholar 

  134. Ouyang, G.; Vuckovic, D.; Pawliszyn, J.: Nondestructive sampling of living systems using in vivo solid-phase microextraction. Chem. Rev. 111, 2784–2814 (2011)

    Article  Google Scholar 

  135. Vuckovic, D.; Zhang, X.; Cudjoe, E.; Pawliszyn, J.: Solid-phase microextraction in bioanalysis: new devices and directions. J. Chromatogr. A 1217, 4041–4060 (2010)

    Article  Google Scholar 

  136. Zhang, X.; Cudjoe, E.; Vuckovic, D.; Pawliszyn, J.: Direct monitoring of ochratoxin A in cheese with solid-phase microextraction coupled to liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1216, 7505–7509 (2009)

    Article  Google Scholar 

  137. Qin, Z.; Bragg, L.; Ouyang, G.; Niri, V.H.; Pawliszyn, J.: Solid-phase microextraction under controlled agitation conditions for rapid on-site sampling of organic pollutants in water. J. Chromatogr. A 1216, 6979–6985 (2009)

    Article  Google Scholar 

  138. Rehman, S.; Latief, R.; Bhat, K.A.; Khuroo, M.A.; Shawl, A.S.; Chandra, S.: Comparative analysis of the aroma chemicals of Melissa officinalis using hydrodistillation and HS-SPME techniques. Arab. J. Chem. 10, 2485–2490 (2017)

    Article  Google Scholar 

  139. Maggi, F.; Bílek, T.; Cristalli, G.; Papa, F.; Sagratini, G.; Vittori, S.: Comparison of the characterisation of the fruit-like aroma of Teucrium flavum L. subsp. flavum by hydrodistillation and solid-phase micro-extraction. J. Sci. Food Agric. 89, 2505–2518 (2009)

    Article  Google Scholar 

  140. Maggi, F.; Papa, F.; Cristalli, G.; Sagratini, G.; Vittori, S.: Characterisation of the mushroom-like flavour of Melittis melissophyllum L. subsp. melissophyllum by headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography (GC–FID) and gas chromatography–mass spectrometry (GC–MS). Food Chem. 123, 983–992 (2010)

    Article  Google Scholar 

  141. Mengoni, T.; Peregrina, D.V.; Censi, R.; Cortese, M.; Ricciutelli, M.; Maggi, F.; Martino, P.D.: SPME–GC–MS analysis of commercial henna samples (Lawsonia inermis L.). Nat. Prod. Res. 30(3), 268–275 (2016)

    Article  Google Scholar 

  142. Maggi, F.; Conti, F.; Cristalli, G.; Giuliani, C.; Papa, F.; Sagratini, G.; Vittori, S.: Chemical differences in volatiles between Melittis melissophyllum L. subsp. melissophyllum and subsp. albida (Guss) P. W. Ball (Lamiaceae) determined by solid-phase microextraction (SPME) coupled with GC/FID and GC/MS. Chem. Biodivers. 8(2), 325–343 (2011)

    Article  Google Scholar 

  143. Tugulea, A.: Principles of SPME, 2018. Chromedia Analytica Science, University of Waterloo, Canada, http://www.chromedia.org/chromedia?waxtrapp=npuhcHsHiemBpdmBlIEcCKJ&subNav=abffyDsHiemBpdmBlIEcCtBDF. 21 April 2018

  144. Vuckovic, D.; Pawliszyn, J.: Systematic evaluation of solid-phase microextraction coatings for untargeted metabolomic profiling of biological fluids by liquid chromatography-mass spectrometry. Anal. Chem. 83, 1944–1954 (2011)

    Article  Google Scholar 

  145. Lord, H.L.; Zhang, X.; Musteata, F.M.; Vuckovic, D.; Pawliszyn, J.: In vivo solid-phase microextraction for monitoring intravenous concentrations of drugs and metabolites. Nat. Protoc. 6, 896–924 (2011)

    Article  Google Scholar 

  146. Vuckovic, D.; Risticevic, S.; Pawliszyn, J.: In vivo solid-phase microextraction in metabolomics: opportunities for the direct investigation of biological systems. Angew. Chem. Int. Ed. 50, 5618–5628 (2011)

    Article  Google Scholar 

  147. Hossain, S.M.Z.; Bojko, B.; Pawliszyn, J.: Automated SPME–GC–MS monitoring of headspace metabolomic responses of E. coli to biologically active components extracted by the coating. Anal. Chim. Acta. 776, 41–49 (2013)

    Article  Google Scholar 

  148. Aprea, E.; Gika, H.; Carlin, S.; Theodoridis, G.; Vrhovsek, U.; Mattivi, F.: Metabolite profiling on apple volatile content based on solid phase microextraction and gas-chromatography time of flight mass spectrometry. J. Chromatogr. A 1218(28), 4517–4524 (2011)

    Article  Google Scholar 

  149. Heather, D.B.; Jean-Marie, D.D.; Jane, E.H.: Bacterial volatile discovery using solid phase microextraction and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 901, 41–46 (2012)

    Article  Google Scholar 

  150. U.S. Report on Corrosion Costs and Preventive Strategies in the United States. www.corrosioncost.com July (2002). Accessed 5 Jan 2019

  151. DNV GL—Report No. OAPUS310GKOCH (PP110272)-1, Rev. 3. www.dnvgl.com Page A-2 December 23, 2015 (http://impact.nace.org/documents/appendix-a.pdf). Accessed 10 Jan 2019

  152. https://www.nace.org/CORROSION-FAILURES-Sinopec-Gas-Pipeline-Explosion.aspx. Accessed 20 Dec 2018

Download references

Acknowledgements

The author(s) would like to acknowledge the financial support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM) through Project No. DF181018. S.M.Z. Hossain would like to thank Department of Chemical Engineering at University of Bahrain, Kingdom of Bahrain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Hossain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, S.M.Z., Razzak, S.A. & Hossain, M.M. Application of Essential Oils as Green Corrosion Inhibitors. Arab J Sci Eng 45, 7137–7159 (2020). https://doi.org/10.1007/s13369-019-04305-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04305-8

Keywords

Navigation