Skip to main content

Advertisement

Log in

Investigating the Physio-chemical Properties of Densified Biomass Pellet Fuels from Fruit and Vegetable Market Waste

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this present research work, fruit and vegetable waste (FVW) sourced from the commercial market is transformed to solid fuels. Solid biomass fuel for commercial heating is produced using agricultural wastes. This in turn reduces the effect of environmental issues. Enough investigations are seen in the literature for Anacardium occidentale kernels, and no study is seen for materials Brassica oleracea leaves, Moringa oleifera pods, Citrullus lanatus lunds and Annona squamosa seeds and are considered for testing and evaluation in the present study. The amount of moisture contents of residues was dried in rotary drum dryer using sun parabolic dish collector coupled with U-type air heater (1000 W). The dried loose biomasses are powdered into grains (< 50 µm) by crushing. By the application of manual press briquetting machine (800 psi), along with the starch binder (< 10%) the grains are pelleted. Inclusions of starch binder effectively bind the material and provide increased compressive strength, a desired one. The outcome for all the above fuels is in the range of: compression strength (300–450 psi), proximate analysis (< 2% of ash), ultimate analysis (< 2% sulphur), moisture content (< 10%), calorific value (15–18 MJ/kg), bulk density (250–350 kg/m3), resistance to water penetration (70–82%), drop shatter resistance (> 94.5%) and tumbling test (> 95%). Less costs of FVW pellets, for the fuel use in boilers and incinerators, etc., provide as a potential and eco-friendly fuel for energy generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bapat, D.W.; Kulkarni, S.V.; Bhandarkar, V.P.: Design and operating experience on fluidized bed boiler burning biomass fuels with high alkali ash. In: Proceedings of the 14th International Conference on Fluidized Bed Combustion. ASME, New York, pp. 165–174 (1997)

  2. Demirbas, A.: Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manag. 42(11), 1357–1378 (2001)

    Article  Google Scholar 

  3. Demirbas, A.: Biomass resources for energy and chemical industry. Energy Educ. Sci. Technol. 5, 21–45 (2000)

    Google Scholar 

  4. Kaur, G.; Brar, Y.; Kothari, D.P.: Potential of livestock generated biomass: untapped energy source in India. Energies 10(7), 847 (2017). https://doi.org/10.3390/en10070847

    Article  Google Scholar 

  5. Ravindranath, N.H.; Hall, D.O.: Biomass Energy and Environment—A Developing Country Perspective from India. Oxford University Press, Oxford (1995)

    Google Scholar 

  6. Tripathi, A.K.; Iyer, P.V.R.; Kandpal, T.C.: A techno-economic evaluation of biomass briquetting in India. Biomass Bioenerg. 14(5–6), 479–488 (1998)

    Article  Google Scholar 

  7. Veeresh, S.J.; Narayana J.: Assessment of Agro industrial wastes proximate, ultimate, SEM and FTIR analysis for feasibility of solid biofuel production. Univers. J. Environ. Res. Technol. 2(6), 575–581 (2012)

    Google Scholar 

  8. Tabares, J.L.M.; Ortiz, L.; Granda, E.; Viar, F.P.: Feasibility study of energy use for densificated lignocellulosic (briquettes). Fuel 79, 1229–1237 (2000)

    Article  Google Scholar 

  9. Yankovsky, S.; Tolokolnikov, A.; Matveev, A.; Marysheva, Y.: Research of composite fuels thermophysical properties based on low-grade coals with addition of fine sawdust and flour industry wastes. MATEC Web Conf. 110, 01089 (2017). https://doi.org/10.1051/matecconf/201711001089

    Article  Google Scholar 

  10. Mallika, T.; Thanchanok, P.; Kasidet, P.; Pisit, M.; Prasong, W.: Effect of applied pressure and binder proportion on the fuel properties of holey bio-briquettes. In: 2015 International Conference on Alternative Energy in Developing Countries and Emerging Economies, Energy Procedia, vol. 79, pp. 890–895 (2015)

  11. Yanna, H.; Tahmasebi, A.; Yu, J.; Li, X.; Meesri, C.: An experimental study on binderless briquetting of low rank coals. Chem. Eng. Technol. 36(5), 749–756 (2013)

    Article  Google Scholar 

  12. Sengar, S.H.; Mohod, A.G.; Khandetod, Y.P.; Patil, S.S.: Performance of Briquetting machine for briquette fuel. Int. J. Energy Eng. 2(1), 28–34 (2012)

    Article  Google Scholar 

  13. Sakkampang, C.; Wongwuttanasatian, T.: Study of ratio of energy consumption and gained energy during briquetting process for glycerin-biomass briquette fuel. Fuel 115, 186–189 (2014). https://doi.org/10.1016/j.fuel.2013.07.023

    Article  Google Scholar 

  14. Costa, S.C.; Barcelos, R.L.; Magnago, R.F.: Solid biofuel from glycerol and agricultural waste as a source of energy. Cellul. Chem. Technol. 51(7–8), 765–774 (2017)

    Google Scholar 

  15. Tanongkankit, Y.S.; Chiewchan, N.; Devahastin, S.: Effect of processing on anti-oxidants and their activity in dietary fiber powder from cabbage outer leaves. Dry. Technol. 28, 1063–1071 (2010)

    Article  Google Scholar 

  16. Chaisamlitpol, S.; Hiranvarachat, B.; Srichumpoung, J.; Devahastin, S.; Chiewchan, N.: Bioactive compositions of extracts from cabbage outer leaves as affected by drying pretreatment prior to microwave assisted extraction. Sep. Purif. Technol. 136, 177–183 (2014)

    Article  Google Scholar 

  17. Lekcharoenkul, P.; Tanongkankit, Y.; Chiewchan, N.; Devahastin, S.: Enhancement of Sulfarophane content in cabbage outer leaves using hybrid drying technique and stepwise change of drying temperature. J. Food Eng. 122, 56–61 (2014)

    Article  Google Scholar 

  18. Ivase, T.J.P.; Bobbo, H.: A review of Moringa oleifera seed oil as feedstock for biodiesel production. J. Multidiscip. Eng. Sci. Technol. 2(12), 3574–3581 (2015)

    Google Scholar 

  19. Pereira, F.S.G.; de Sobral, A.D.: Moringa oleifera: a promising agricultural crops and of social inclusion for Brazil and semi-arid regions for the production of energetic biomass (Biodiesel and Briquettes). OCL 25(1), D106 (2018)

    Article  Google Scholar 

  20. Nyakuma, B.B.: Thermogravimetric and Kinetic Analysis of Melon (Citrullus colocynthis L.) Seed Husk Using the Distributed Activation Energy Model. Climate Technol, Environ (2015). https://doi.org/10.1515/rtuect-2015-0007

    Book  Google Scholar 

  21. Rapheal, I.A.; Moki, E.C.; Gusau, H.L.: Effect of binder on physio-chemical properties of fuel briquettes produced from watermelon peels. AASCIT J. Energy 5(2), 23–27 (2018)

    Google Scholar 

  22. Davies, R.M.; Davies, O.A.: Physical and combustion characteristics of briquettes made from water hyacinth and phytoplankton sum as binder. J. Combust. (2013). https://doi.org/10.1155/2013/549894

    Article  Google Scholar 

  23. Suldhal, A.A.; Shrigiri, B.M.: Performance and emission characteristics of diesel engine using custard apple seed oil methyl ester and blends. Int. Res. J. Eng. Technol. 03(06), 2068–2072 (2016)

    Google Scholar 

  24. Mohod, A.G.; Khandetod, Y.P.; Powar, A.G.: Processed cashew shell waste as fuel supplement for heat generation. Energy. Sustain. Dev. XII(4), 73–76 (2008)

    Article  Google Scholar 

  25. Xia, X.; Xiao, H.; Yang, Z.; Xie, X.; Bhimani, J.: Pelletization characteristics of the Hydrothermal pretreated rice straw with added binders. Arab. J. Sci. Eng. (2018). https://doi.org/10.1007/s13369-018-3131-4

    Article  Google Scholar 

  26. Bennamoun, L.; Haru, N.Y.; Afzal, M.T.: Effect of storage conditions on moisture sorption of mixed biomass pellets. Arab. J. Sci. Eng. 43(3), 1195–1203 (2018)

    Article  Google Scholar 

  27. Jain, R.K.; Bal, S.: Properties of pearl millet. J. Agric. Eng. Res. 66, 85–91 (1997)

    Article  Google Scholar 

  28. Asadieraghi, M.; Daud, W.M.A.W.; Abbas, H.F.: Hetrogeneous catalysts for advanced bio fuel production through catalytic biomass pyrolysis vapor upgrading: a review. RSC Adv. 5, 22234–22236 (2012)

    Article  Google Scholar 

  29. Milledge, J.J.; Heaven, S.: Energy balance of biogas production from microalgae: development of an energy and mass balance model. Current Biotechnol. 4(4), 554–567 (2015)

    Article  Google Scholar 

  30. Heaven, S.; Milledge, J.; Zhang, Y.: Comments on ‘Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable’. Biotechnol. Adv. 29(1), 164–167 (2011). https://doi.org/10.1016/j.biotechadv.2010.10.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagappan Beemkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arulprakasajothi, M., Beemkumar, N., Parthipan, J. et al. Investigating the Physio-chemical Properties of Densified Biomass Pellet Fuels from Fruit and Vegetable Market Waste. Arab J Sci Eng 45, 563–574 (2020). https://doi.org/10.1007/s13369-019-04294-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04294-8

Keywords

Navigation