Skip to main content
Log in

Effect of Storage Conditions on Moisture Sorption of Mixed Biomass Pellets

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The aim of this paper was to study the moisture sorption characteristics of mixed biomass pellets. The pellets were developed using a mixture of woody (spruce or pine) and agricultural (reed canary grass or hay) biomass with a ratio of 1:1. The pellets were stored in a controlled environment until reaching the equilibrium moisture content. The temperature of the controlled environment was varied between 15 and 25 \(^{\circ }\hbox {C}\) and relative humidity between 20 to 90%. The experimental results showed this temperature range had no effect on the moisture sorption isotherms. However, the equilibrium moisture content at higher relative humidity was found dependent on the type of the material and was higher for spruce-hay pellets compared to the other tested pellets. Oswin, Guggenheim-Anderson-de Boer, Henderson and Peleg models were tested for the prediction of the moisture isotherms. With a coefficient of determination varying between 0.998 and 0.995, a standard error between 0.054 and 0.071 and chi-square error ranging between 0.009 and 0.015, Oswin model was found more suitable to predict the moisture sorption isotherms of all biomass pellets. This result was further confirmed using the residuals plot, showing a more uniform distribution for Oswin model compared to the other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murray, G.: International pellet markets and Canadian industry update. http://www.pellet.org/images/2014-06-13_G_Murray_IBCES.pdf (June 2014)

  2. Natural Resources Canada. http://cfs.nrcan.gc.ca/coupes-selectives/57?lang=en_CA. Last update December 2014.

  3. Statistics Canada. http://www5.statcan.gc.ca/cimt-cicm/topNCountries-pays?lang=eng&sectionId=0&dataTransformation=0&refYr=2014&refMonth=10&freq=12&countryId=0&usaState=0&provId=1&retrieve=Retrieve&save=null&country=null&tradeType=1&topNDefault=10&monthStr=null&chapterId=44&arrayId=0&sectionLabel=&scaleValue=0&scaleQuantity=6&commodityId=440131

  4. Tooyserkani, Z.; Sokhansanj, S.; Bi, X.; Lim, J.; Lau, A.; Saddler, J.; Kumar, L.; Lam, P.S.; Melin, S.: Steam treatment of four softwood species and bark to produce terrified wood. Appl. Energy 103, 514–521 (2013)

    Article  Google Scholar 

  5. Lehtikangas, P.: Storage effects on pelletised sawdust, logging residues and bark. Biomass Bioenergy 19(5), 287–293 (2000)

    Article  Google Scholar 

  6. Temmerman, M.; Rabier, F.; Jensen, P.D.; Hartmann, H.; Böhm, T.: Comparative study of durability test methods for pellets and briquettes. Biomass Bioenergy 30(11), 964–972 (2006)

    Article  Google Scholar 

  7. Whittaker, C.; Shield, I.: Factors affecting wood, energy, grass and straw pellet durability - A review. Renew. Sustain. Energy Rev. 71, 1–11 (2017)

    Article  Google Scholar 

  8. Wang, S.; Yuan, X.; Li, C.; Huang, Z.; Leng, L.; Zeng, G.; Li, H.: Variation in the physical properties of wood pellets, and emission of aldehyde, ketone under different storage conditions. Fuel 183, 314–321 (2016)

    Article  Google Scholar 

  9. Sultana, A.; Kumar, A.: Ranking of biomass pellets by integration of economic, environmental and technical factors. Biomass Bioenergy 39, 344–355 (2012)

    Article  Google Scholar 

  10. Kaliyan, N.; Morey, R.V.: Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 33(3), 337–359 (2009)

    Article  Google Scholar 

  11. Graham, S.; Eastwick, C.; Snape, C.; Quick, W.: Mechanical degradation of biomass wood pellets during long term stockpile storage. Fuel Process. Technol. 160, 143–151 (2017)

    Article  Google Scholar 

  12. Järvinen, T.; Agar, D.: Experimentally determined storage and handling properties of fuel pellets made from torrefied whole-tree pine chips, logging residues and beech stem wood. Fuel 129, 330–339 (2014)

    Article  Google Scholar 

  13. Obernberger, I.; Thek, G.: Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behavior. Biomass Bioenergy 27(6), 653–669 (2004)

    Article  Google Scholar 

  14. Núnez, C.A.F.; Jochum, J.; Vargas, F.E.S.: Characterization and feasibility of biomass fuel pellets made of Colombian timber, coconut and oil palm residues regarding European standards. Environ. Biotechnol. 8(2), 67–76 (2012)

    Google Scholar 

  15. Lee, J.S.; Sokhansanj, S.; Lau, A.K.; Lim, C.J.; Bi, X.T.: The effect of storage on the net calorific value of wood pellets. Can. Biosyst. Eng. 57, 8.5–8.12 (2015)

    Article  Google Scholar 

  16. Nilsson, D.; Bernesson, S.; Hansson, P.A.: Pellet production from agricultural raw materials—a systems study. Biomass Bioenergy 35(1), 679–689 (2011)

    Article  Google Scholar 

  17. Theerarattananoon, K.; Xu, F.; Wilson, J.; Ballard, R.; Mckinney, L.; Staggenborg, S.; Vadlani, P.; Pei, Z.J.; Wang, D.: Physical properties of pellets made from sorghum stalk, corn stover, wheat straw and big bluestem. Ind. Crops Prod. 33(2), 325–332 (2011)

    Article  Google Scholar 

  18. Fasina, O.O.: Physical properties of peanut hull pellets. Bioresour. Technol. 99(5), 1259–1266 (2008)

    Article  Google Scholar 

  19. Mani, S.; Tabil, L.G.; Sokhansanj, S.: Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30(7), 648–654 (2006)

    Article  Google Scholar 

  20. Lehtikangas, P.: Storage effects on pelletised sawdust, logging residues and bark. Biomass Bioenergy 19(5), 287–293 (2000)

    Article  Google Scholar 

  21. Hartley, I.D.; Wood, L.J.: Hygroscopic properties of densified softwood pellets. Biomass Bioenergy 32(1), 90–93 (2008)

    Article  Google Scholar 

  22. Singh, R.N.: Equilibrium moisture content of biomass briquettes. Biomass Bioenergy 26(3), 251–253 (2004)

    Article  Google Scholar 

  23. Fasina, O.; Sokhansanj, S.; Tyler, R.: Thermodynamics of moisture sorption in alfalfa pellets. Dry. Technol. 15(5), 1153–1570 (1997)

    Article  Google Scholar 

  24. Fasina, O.O.; Sokhansanj, S.: Equilibrium moisture relations and heat of sorption of alfalfa pellets. J. Agric. Eng. Res. 56(1), 51–63 (1993)

    Article  Google Scholar 

  25. Yub Harun, N.; Afzal, M.T.: Chemical and mechanical properties of pellets made from agricultural and woody biomass. In: American Society of Agricultural and Biological Engineers Annual International Meeting, vol. 5, pp. 3776–3784 (2014)

  26. ASTM D4442-07. Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Base Materials. ASTM International, West Conshohocken, PA . www.astm.org (2007)

  27. Karunanithy, C.; Muthukumarappan, K.; Donepudi, A.: Moisture sorption characteristics of switchgrass and prairie cord grass. Fuel 103, 171–178 (2013)

    Article  Google Scholar 

  28. Krupińska, B.; Strømmen, I.; Pakowski, Z.; Eikevik, T.M.: Modeling of sorption isotherms of various kinds of wood at different temperature conditions. Dry. Technol. 25(9), 1463–1470 (2007)

    Article  Google Scholar 

  29. Doymaz, I.: Air-drying characteristics of tomatoes. J. Food Eng. 78(4), 1291–1297 (2007)

    Article  Google Scholar 

  30. Ando, Y.; Mizutani, K.; Wakatsuki, N.: Electrical impedance analysis of potato tissues during drying. J. Food Eng. 121, 24–31 (2014)

    Article  Google Scholar 

  31. Ait Mohamed, L.; Kouhila, M.; Lahsasni, S.; Jamali, A.; Idlimam, A.; Rhazi, M.; Aghfir, M.; Mahrouz, M.: Equilibrium moisture content and heat of sorption of Gelidium sesquipedale. J. Stored Prod. Res. 41(2), 199–209 (2005)

    Article  Google Scholar 

  32. Bennamoun, L.; Crine, M.; Léonard, A.: Convective drying od wastewater sludge: Introduction of shrinkage effect in mathematical modeling. Dry. Technol. 31(6), 643–654 (2003)

    Article  Google Scholar 

  33. Al-Muhtaseb, A.H.; McMinn, W.A.M.; Magee, T.R.A.: Moisture sorption isotherm characteristics of food products: a review. Food Bioprod. Process. 80(2), 118–128 (2002)

    Article  Google Scholar 

  34. Panchariya, P.C.; Popovic, D.; Ssharma, A.L.: Modeling of desorption isotherm of black tea. Dry. Technol. 19(6), 1177–1188 (2001)

    Article  Google Scholar 

  35. Kuisma, E.; Palonen, P.; Yli-Halla, M.: Reed canary grass straw as a substrate in soilless cultivation of strawberry. Sci. Hortic. 178, 217–223 (2014)

    Article  Google Scholar 

  36. Behgar, M.; Valizadeh, R.; Mirzaee, M.; Naserian, A.A.; Nasiri, M.R.: Correlation between the physical and chemical properties of some forage and non-forage fiber sources. J. Anim. Vet. Adv. 8(11), 2280–2285 (2009)

    Google Scholar 

  37. Desmorieux, H.; Decaen, N.: Convective drying of spirulina in thin layer. J. Food Eng. 66(4), 497–503 (2005)

    Article  Google Scholar 

  38. Belahmdi, E.; Belghit, A.; Mira, A.; Kaoua, A.: Approche expérimentale de la cinétique de séchage des produits agroalimentaires. Application aux peaux d’oranges et à la pulpe de betteraves. Revue Générale de Thermique 32(380–381), 444–453 (1993)

  39. Chen, C.: Evaluation of equilibrium sorption isotherm equations. Open Chem. Eng. J. 7, 24–44 (2013)

    Article  Google Scholar 

  40. Nilsson, D.; Svennerstedt, B.; Wretfors, C.: Adsorption equilibrium moisture contents of flax straw, hemp stalks and reed canary grass. Biosyst. Eng. 91(1), 35–43 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyes Bennamoun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennamoun, L., Harun, N.Y. & Afzal, M.T. Effect of Storage Conditions on Moisture Sorption of Mixed Biomass Pellets. Arab J Sci Eng 43, 1195–1203 (2018). https://doi.org/10.1007/s13369-017-2808-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2808-4

Keywords

Navigation