Skip to main content
Log in

Effect of Side Reflectors on the Performance of Flat Plate Solar Collector: A Case Study for Asir Region, Saudi Arabia

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The solar collector’s efficiency is directly depended upon the solar radiation intensity falling on its surface. In order to increase the solar concentration over the collector, side reflectors are introduced which will concentrate both diffuse and direct radiations from the sun toward the collector surface. Therefore, in this study the influence of side (left and right) reflectors on efficiency improvement of the flat plate solar collector (FPSC) was analyzed. For determining the optimum tilt angles of side reflector and collector, a simulation model was developed by using TRNSYS software. The results obtained from simulation were validated with the experimental results for whole year during the daytime of semiarid Asir region of Saudi Arabia. Both simulation and experimental results indicate that optimal left side reflector angle is lowest in winter with the value of 38° and highest in summer with the value of 68°, while the optimal angle of right side reflector is lowest in summer with the value of 43° and highest in winter with the value of 74.5°. The thermal efficiency of FPSC has been improved significantly by adding side reflectors. The average thermal efficiency of FPSC without reflector was 46% which was increased to 58% by adding side reflectors. The addition of side reflectors increases the concentration of solar radiation falling on the collector surface and thus increases the output temperature of water by 12 °C as compared to input water temperature. Thus, the effective size of the system was reduced by adding side reflectors as thermal efficiency was enhanced which implies less space requirement for heating an appropriate quantity of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

α :

Angle of solar altitude (°)

β :

Tilt angle of collector (°)

γ 1 :

Angle between the horizontal plane and left side reflector (°)

γ 2 :

Angle between the horizontal plane and right side reflector (°)

δ :

Angle of sun declination (°)

η coll :

Solar collector thermal efficiency

ω :

Sun hour angle (°)

ϕ :

The solar collector latitude (°)

\( \varepsilon_{\text{g}} ,\varepsilon_{\text{p}} \) :

Emissivity of plate glass and absorber plate

ρ Αlum :

Aluminum sheet reflectance

ρ g :

Ground reflectance

σ 1 :

Angle of incident from the left side reflector (°)

σ 2 :

Angle of incident from the right side reflector (°)

θ :

South facing solar zenith angle (°)

AM:

Optical air mass

D :

Daylight saving time (h)

d :

Performance coefficient of collector

e :

Root mean square deviation (°)

EOT:

Equation of time

G dif :

Diffuse solar radiation on horizontal surface (W/m2)

G 0 :

Solar constant (1366 W/m2)

G dif_col :

Total diffuse solar radiation (W/m2)

G dif_sky :

Sky-diffuse solar radiation (W/m2)

G dir_col :

Direct solar radiation on collector surface (W/m2)

G h :

Global solar radiation on horizontal surface (W/m2)

G in :

Global solar incident radiation (W/m2)

G sr1_incident :

Solar radiation incident on the left side reflector (W/m2)

G sr2_incident :

Solar radiation incident on the right side reflector (W/m2)

G gr_reflected :

Ground-reflected solar radiation (W/m2)

G sr1_reflected :

Solar radiation reflected from the left side reflector reaches the collector surface (W/m2)

G sr2_reflected :

Solar radiation reflected from the right side reflector reaches the collector surface (W/m2)

G net_col :

Net incoming solar radiation on the collector surface without the additional solar input from reflected solar radiation from reflectors (W/m2)

G tot_col :

Total solar radiation on the collector surface (W/m2)

H :

Altitude above the sea level (m)

I :

Intensity of solar radiation (W/m2)

L long :

Longitude of the solar collector (°)

L STM :

Local standard time meridian (°)

L ST :

Local solar time (h)

LT:

Local time (h)

N :

Day number of the year

r :

Correlation coefficient

T in :

Temperature distribution inside the tank (°C)

T a :

Ambient temperature (°C)

T out :

Outlet fluid temperature (°C)

T c :

Temperature of glass cover (°C)

T sky :

Sky temperature (°C)

T p :

Temperature of absorber plate (°C)

\( \dot{m} \) :

Mass flow rate

C p :

Specific heat capacity

\( \dot{Q}_{\text{useful}} \) :

Heat gain useful

F R :

Heat removal factor

A p :

Absorber plate area

F′:

Collector efficiency factor

Φ :

Plate effectiveness

U l :

Overall loss coefficient

S :

Absorber plate radiation absorption per unit area

References

  1. Wenceslas, K.Y.; Ghislain, T.: Experimental validation of exergy optimization of a flat-plate solar collector in a thermosyphon solar water heater. Arab. J. Sci. Eng. 44, 2535–2549 (2019)

    Article  Google Scholar 

  2. ur Rehman, N.; Uzair, M.; Siddiqui, M.A.; Khamooshi, M.: Regression models and sensitivity analysis for the thermal performance of solar flat-plate collectors. Arab. J. Sci. Eng. 44, 1119–1127 (2019)

    Article  Google Scholar 

  3. Zhou, L.; Li, Y.; Hu, E.; Qin, J.; Yang, Y.: Comparison in net solar efficiency between the use of concentrating and non-concentrating solar collectors in solar aided power generation systems. Appl. Therm. Eng. 75, 685–691 (2015)

    Article  Google Scholar 

  4. Cau, G.; Cocco, D.; Tola, V.: Performance assessment of USC power plants integrated with CCS and concentrating solar collectors. Energy Convers. Manag. 88, 973–984 (2014)

    Article  Google Scholar 

  5. Ahmad, G.E.; Hussein, H.M.S.: Comparative study of PV modules with and without a tilted plane reflector. Energy Convers. Manag. 42, 1327–1333 (2001)

    Article  Google Scholar 

  6. Abd-ur-Rehman, H.M.; Al-Sulaiman, F.A.; Mehmood, A.; Shakir, S.; Umer, M.: The potential of energy savings and the prospects of cleaner energy production by solar energy integration in the residential buildings of Saudi Arabia. J. Clean. Prod. 183, 1122–1130 (2018)

    Article  Google Scholar 

  7. Rehman, S.; Mohandes, M.: Estimation of diffuse fraction of global solar radiation using artificial neural networks. Energy Sources A Recover. Util. Environ. Eff. 31, 974–984 (2009)

    Article  Google Scholar 

  8. Alwetaishi, M.; Balabel, A.: Numerical study of micro-climatically responsive school building design in Saudi Arabia. J. King Saud Univ. Eng. Sci. 31, 224–233 (2018)

    Google Scholar 

  9. Pucar, M.D.J.; Despic, A.R.: The enhancement of energy gain of solar collectors and photovoltaic panels by the reflection of solar beams. Energy 27, 205–223 (2002)

    Article  Google Scholar 

  10. Hellstrom, B.; Adsten, M.; Nostell, P.; Karlsson, B.; Wackelgard, E.: The impact of optical and thermal properties on the performance of flat plate solar collectors. Renew. Energy 28, 331–344 (2003)

    Article  Google Scholar 

  11. Kostić, L.T.; Pavlović, T.M.; Pavlović, Z.T.: Optimal design of orientation of PV/T collector with reflectors. Appl. Energy 87, 3023–3029 (2010)

    Article  Google Scholar 

  12. Kostic, L.T.; Pavlovic, T.M.; Pavlovic, Z.T.: Influence of reflectance from flat aluminum concentrators on energy efficiency of PV/Thermal collector. Appl. Energy 87, 410–416 (2010)

    Article  Google Scholar 

  13. Kumar, R.; Kaushik, S.C.; Garg, H.P.: Analytical study of collector solar-gain enhancement by multiple reflectors. Energy 20, 511–522 (1995)

    Article  Google Scholar 

  14. Kostić, L.T.; Pavlović, Z.T.: Optimal position of flat plate reflectors of solar thermal collector. Energy Build. 45, 161–168 (2012)

    Article  Google Scholar 

  15. Seitel, S.C.: Collector performance enhancement with flat reflectors. Sol. Energy 17, 291–295 (1975)

    Article  Google Scholar 

  16. Chen, H.; Ji, J.; Pei, G.; Yang, J.; Zhang, Y.: Experimental and numerical comparative investigation on a concentrating photovoltaic system. J. Clean. Prod. 174, 1288–1298 (2018)

    Article  Google Scholar 

  17. Tanaka, H.: Solar thermal collector augmented by flat plate booster reflector: optimum inclination of collector and reflector. Appl. Energy 88, 1395–1404 (2011)

    Article  Google Scholar 

  18. Tanaka, H.: Theoretical analysis of solar thermal collector and flat plate bottom reflector with a gap between them. Energy Rep. 1, 80–88 (2015)

    Article  Google Scholar 

  19. Pavlović, Z.T.; Kostić, L.T.: Variation of reflected radiation from all reflectors of a flat plate solar collector during a year. Energy 80, 75–84 (2015)

    Article  Google Scholar 

  20. Bhowmik, H.; Amin, R.: Efficiency improvement of flat plate solar collector using reflector. Energy Rep. 3, 119–123 (2017)

    Article  Google Scholar 

  21. Baccoli, R.; Frattolillo, A.; Mastino, C.; Curreli, S.; Ghiani, E.: A comprehensive optimization model for flat solar collector coupled with a flat booster bottom reflector based on an exact finite length simulation model. Energy Convers. Manag. 164, 482–507 (2018)

    Article  Google Scholar 

  22. Duffie, J.A.; Beckman, W.A.: Solar Engineering of Thermal Processes, 4th edn. Wiley, New York (2013)

    Book  Google Scholar 

  23. Tiwari, G.N.; Tiwari, A.; Shyam, : Handbook of Solar Energy. Springer, New York (2016)

    Book  Google Scholar 

  24. Sivakumar, P.; Christraj, W.; Sridharan, M.; Jayamalathi, N.: Performance improvement study of solar. ARPN J. Eng. Appl. Sci. 7, 45–49 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors of the present work feel grateful and would like to thank King Khalid University, Abha, and Center of Research Excellence in Renewable Energy (CoRE-RE), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, for providing facilities and supports in performing experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Irshad.

Appendices

Appendix A

Time

T in

T out

T 3

T 4

T amp

I

8:30

31.9

43.5

34.8

33.7

17

230

9:00

34.5

47.3

33.1

35.1

17

305

9:30

36.5

50.1

32.1

36.1

18

370

10:00

38.1

54.6

33.6

37.5

18

397

10:30

40.5

59.4

34.8

38.4

18

479

11:00

42.1

65.3

35.1

39.4

19

535

11:30

43.7

67

36.9

40.8

19

606

12:00

44.7

68

37.8

42.7

19

708

12:30

45.8

70

38.7

43.1

20

788

13:00

46.3

72

39.4

44.5

20

805

13:30

47.9

70

40.5

41.8

21

847

14:00

48

68

41.5

43.8

21

793

14:30

44

55

42.6

41.5

21

787

15:00

42

50.6

43.1

41.3

20

732

15:30

40

48.2

52.6

40.8

20

645

16:30

38

46.3

50.7

39.2

19

585

17:00

37

44.5

41.8

37.5

19

483

Appendix B

See Table 4.

Table 4 Data for graph 17

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Assal, B., Irshad, K. & Ali, A. Effect of Side Reflectors on the Performance of Flat Plate Solar Collector: A Case Study for Asir Region, Saudi Arabia. Arab J Sci Eng 45, 1035–1050 (2020). https://doi.org/10.1007/s13369-019-04221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04221-x

Keywords

Navigation