Skip to main content

Advertisement

Log in

Hydrogen Sulfide Removal from Downstream Wastewater Using Calcium-Coated Wood Sawdust-Based Activated Carbon

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Hydrogen sulfide is very toxic and dangerous. It can be observed in a huge amount in petroleum wastewater. In this study, residual wood sawdust was chemically modified by potassium hydroxide to produce wood sawdust activated carbon (ACWSD) and subsequently coated with calcium (Ca) extracted from eggshell. The Ca-coated ACWSD was applied in the sorption of dissolved H2S and its ions (HS and S2−) from simulated wastewater. Response surface methodology was employed to investigate the impact of various variables such as calcination temperature, concentration of calcium solution, and calcination contact time on the responses. The result showed that the highest adsorption capacity and product of impregnated activated carbon (IAC) were obtained at the following optimum conditions: calcination temperature of 890.86 °C, calcium concentration in the solution of 49 v%, and impregnated contact time of 61.58 min for the preparation of Ca-ACWSD, resulting in the highest removal efficiency (RE%) and IAC yield % of 96.86% and 30.161%, respectively. X-ray powder diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopies were used to confirm the physicochemical properties of the Ca-ACWSD adsorbent. Modified activated carbon has higher RE % compared with unimpregnated one. Freundlich isotherm model is more fitted to adsorption capacity. The result IAC has shown the best performance for the removal of these priority water pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Omidi-Khaniabadi, Y.; Jafari, A.; Nourmoradi, H.; Taheri, F.; Saeedi, S.: Adsorption of 4-chlorophenol from aqueous solution using activated carbon synthesized from aloe vera green wastes. J. Adv. Environ. Health Res. 3, 120–129 (2015)

    Google Scholar 

  2. Zhang, L.; De Schryver, P.; De Gusseme, B.; De Muynck, W.; Boon, N.; Verstraete, W.: Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Res. 2008(42), 1–12 (2007). https://doi.org/10.1016/j.watres.2007.07.013

    Article  Google Scholar 

  3. Boudrahem, F.; Aissani-Benissad, F.; Ait-Amar, H.: Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. J. Environ. Manag. 90, 3031–3039 (2009)

    Article  Google Scholar 

  4. Guijarro-Aldaco, A.; Hernández-Montoya, V.; Bonilla-Petriciolet, A.; Montes-Morán, M.A.; Mendoza-Castillo, D.I.: Improving the adsorption of heavy metals from water using commercial carbons modified with egg shell wastes. Ind. Eng. Chem. Res. 50, 9354–9362 (2011)

    Article  Google Scholar 

  5. Yin, C.Y.; Aroua, M.K.; Daud, W.: Review of modification of activated carbon for enhancing contaminant uptake from aqueous solutions. Sep. Purif. Technol 52, 403–415 (2007)

    Article  Google Scholar 

  6. Ahn, C.K.; Park, D.; Woo, S.H.; Park, J.M.: Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants. J. Hazard. Mater. 164, 1130–1136 (2009)

    Article  Google Scholar 

  7. Nguyen-Thanh, D.; Bandosz, T.J.: Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide. Carbon 43, 359–367 (2005)

    Article  Google Scholar 

  8. Seredych, M.; Bandosz, T.J.: Reactive adsorption of hydrogen sulfide on graphite oxide/Zr(OH)4 composites. Chem. Eng. J. 166, 1032–1038 (2011)

    Article  Google Scholar 

  9. Seredych, M.; Mabayoje, O.; Bandosz, T.J.: Visible-light-enhanced interactions of hydrogen sulfide with composites of zinc (oxy) hydroxide with graphite oxide and graphene. Langmuir 28, 1337–1346 (2011)

    Article  Google Scholar 

  10. Florent, M.; Wallace, R.; Bandosz, T.J.: Removal of hydrogen sulfide at ambient conditions on cadmium/GO-based composite adsorbents. J. Colloid Interface Sci. 448, 573–581 (2015)

    Article  Google Scholar 

  11. Bagreev, A.; Menendez, J.A.; Dukhno, I.; Tarasenko, Y.; Bandosz, T.J.: Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide. Carbon 42, 469–476 (2004)

    Article  Google Scholar 

  12. Olalere, O.A.; Abdurahman, N.H.; Yunus, R.M.; Alara, O.R.; Gan, C.-Y.: Microwave-enhanced extraction and mass spectrometry fingerprints of polyphenolic constituents in sesamum indicum leaves. Ind. Crops Prod. 131, 151–159 (2019)

    Article  Google Scholar 

  13. Asaoka, S.; Yamamoto, T.; Kondo, S.; Hayakawa, S.: Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments. Bioresour. Technol. 100, 4127–4132 (2009)

    Article  Google Scholar 

  14. Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. Wiley, Hoboken (2001)

    Google Scholar 

  15. Zainudin, N.F.; Lee, K.T.; Kamaruddin, A.H.; Bhatia, S.; Mohamed, A.R.: Study of adsorbent prepared from oil palm ash (OPA) for flue gas desulfurization. Sep. Purif. Technol. 45, 50–60 (2005)

    Article  Google Scholar 

  16. Nayebzadeh, H.; Saghatoleslami, N.; Tabasizadeh, M.: Optimization of the activity of KOH/calcium aluminate nanocatalyst for biodiesel production using response surface methodology. J. Taiwan Inst. Chem. Eng. 68, 379–386 (2016)

    Article  Google Scholar 

  17. Hassani, A.; Alidokht, L.; Khataee, A.R.; Karaca, S.: Optimization of comparative removal of two structurally different basic dyes using coal as a low-cost and available adsorbent. J. Taiwan Inst. Chem. Eng. 45, 1597–1607 (2014)

    Article  Google Scholar 

  18. Roy, P.; Mondal, N.K.; Das, K.: Modeling of the adsorptive removal of arsenic: a statistical approach. J. Environ. Chem. Eng. 2, 585–597 (2014)

    Article  Google Scholar 

  19. Foo, K.Y.; Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010)

    Article  Google Scholar 

  20. Langmuir, I.: The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38, 2221–2295 (1916)

    Article  Google Scholar 

  21. Friendly, H.: About adsorption in solutions. J. Phys. Chem. 57, 385–470 (1907)

    Google Scholar 

  22. Dubinin, M.M.; Radushkevich, L.V.: Equation of the characteristic curve of activated charcoal. Chem. Zentr 1, 875 (1947)

    Google Scholar 

  23. Tempkin, M.I.; Pyzhev, V.: Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim. USSR 12, 327 (1940)

    Google Scholar 

  24. Chaudhary, N.; Balomajumder, C.: Optimization study of adsorption parameters for removal of phenol on aluminum impregnated fly ash using response surface methodology. J. Taiwan Inst. Chem. Eng. 45, 852–859 (2014)

    Article  Google Scholar 

  25. Alam, M.Z.; Ameem, E.S.; Muyibi, S.A.; Kabbashi, N.A.: The factors affecting the performance of activated carbon prepared from oil palm empty fruit bunches for adsorption of phenol. Chem. Eng. J. 155, 191–198 (2009)

    Article  Google Scholar 

  26. Basu, J.K.; Monal, D.; Pinaki, G.: Statistical optimization for the prediction of ibuprofen adsorption capacity by using microwave assisted activated carbon. Arch. Appl. Sci. Res. 4, 1053–1060 (2012)

    Google Scholar 

  27. Shaaban, A.; Se, S.M.; Ibrahim, I.M.; Ahsan, Q.: Preparation of rubber wood sawdust-based activated carbon and its use as a filler of polyurethane matrix composites for microwave absorption. New Carbon Mater. 30, 167–175 (2015)

    Article  Google Scholar 

  28. Tao, Y.; Li, P.; Shi, S.Q.: Effects of carbonization temperature and component ratio on electromagnetic interference shielding effectiveness of woodceramics. Materials (Basel) 9, 540 (2016)

    Article  Google Scholar 

  29. Gottipati, R.; Mishra, S.: Process optimization of adsorption of Cr(VI) on activated carbons prepared from plant precursors by a two-level full factorial design. Chem. Eng. J. 160, 99–107 (2010). https://doi.org/10.1016/j.cej.2010.03.015

    Article  Google Scholar 

  30. Bagreev, A.; Bandosz, T.: Carbonaceous materials for gas phase desulfurization: role of surface heterogeneity. Pap. Am. Chem. Soc. Div. Fuel Chem. 49, 817–821 (2004)

    Google Scholar 

  31. Bandosz, T.J.: On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. J. Colloid Interface Sci. 246, 1–20 (2002)

    Article  Google Scholar 

  32. Efthimiadis, E.A.; Sotirchos, S.V.: Sulfidation of limestone-derived calcines. Ind. Eng. Chem. Res. 31, 2311–2321 (1992)

    Article  Google Scholar 

  33. Mabayoje, O.; Seredych, M.; Bandosz, T.J.: Reactive adsorption of hydrogen sulfide on visible light photoactive zinc (hydr)oxide/graphite oxide and zinc (hydr)oxychloride/graphite oxide composites. Appl. Catal. B Environ. 2013(132–133), 321–331 (2012). https://doi.org/10.1016/j.apcatb.2012.12.011

    Article  Google Scholar 

  34. Kazmierczak-Razna, J.; Gralak-Podemska, B.; Nowicki, P.; Pietrzak, R.: The use of microwave radiation for obtaining activated carbons from sawdust and their potential application in removal of NO2 and H2S. Chem. Eng. J. 2015(269), 352–358 (2015). https://doi.org/10.1016/j.cej.2015.01.057

    Article  Google Scholar 

  35. Mabayoje, O.; Seredych, M.; Bandosz, T.J.: Cobalt (hydr) oxide/graphite oxide composites: importance of surface chemical heterogeneity for reactive adsorption of hydrogen sulfide. J. Colloid Interface Sci. 2012(378), 1–9 (2012). https://doi.org/10.1016/j.jcis.2012.04.007

    Article  Google Scholar 

  36. Asaoka, S.; Okamura, H.; Morisawa, R.; Murakami, H.; Fukushi, K.; Okajima, T.; et al.: Removal of hydrogen sulfide using carbonated steel slag. Chem. Eng. J. 228, 843–849 (2013). https://doi.org/10.1016/j.cej.2013.05.065

    Article  Google Scholar 

  37. Gutiérrez Ortiz, F.J.; Aguilera, P.G.; Ollero, P.: Modeling and simulation of the adsorption of biogas hydrogen sulfide on treated sewage–sludge. Chem. Eng. J. 253, 305–315 (2014). https://doi.org/10.1016/j.cej.2014.04.114

    Article  Google Scholar 

  38. Wallace, R.; Seredych, M.; Zhang, P.; Bandosz, T.J.: Municipal waste conversion to hydrogen sulfide adsorbents: investigation of the synergistic effects of sewage sludge/fish waste mixture. Chem. Eng. J. 2014(237), 88–94 (2013). https://doi.org/10.1016/j.cej.2013.10.005

    Article  Google Scholar 

  39. Florent, M.; Bandosz, T.J.: Effects of surface heterogeneity of cobalt oxyhydroxide/graphite oxide composites on reactive adsorption of hydrogen sulfide. Microporous Mesoporous Mater. 2015(204), 8–14 (2014). https://doi.org/10.1016/j.micromeso.2014.11.001

    Article  Google Scholar 

  40. Jacukowicz-sobala, I.; Wilk, Ł.J.; Drabent, K.; Kociołek-Balawejder, E.: Journal of colloid and interface science synthesis and characterization of hybrid materials containing iron oxide for removal of sulfides from water. J. Colloid Interface Sci. 460, 154–163 (2015). https://doi.org/10.1016/j.jcis.2015.08.035

    Article  Google Scholar 

  41. El-Geundi, M.S.: Homogeneous surface diffusion model for the adsorption of basic dyestuffs onto natural clay in batch adsorbers. Adsorpt. Sci. Technol. 8, 217–225 (1991)

    Article  Google Scholar 

  42. Çeçen, F.; Aktas, Ö.: Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment. Wiley, Hoboken (2011)

    Book  Google Scholar 

Download references

Acknowledgements

This work was funded by the Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, through a local research grant scheme (ERGS) no. RDU130618.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Omar Abed Habeeb or Olusegun Abayomi Olalere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habeeb, O.A., Olalere, O.A., Kanthasamy, R. et al. Hydrogen Sulfide Removal from Downstream Wastewater Using Calcium-Coated Wood Sawdust-Based Activated Carbon. Arab J Sci Eng 45, 501–518 (2020). https://doi.org/10.1007/s13369-019-04207-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04207-9

Keywords

Navigation