Skip to main content
Log in

Effect of Various Evaluation Criteria on Heat Transfer Enhancement of Nanofluids: A Case Study of Water-Based Cu2O Nanofluids

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The numerical study investigates the effect of various comparison criteria on the forced convective heat transfer of water-based cuprous oxide nanofluids in a horizontal mini tube under uniform heat flux conditions. The forced convective flow regime was validated, and it was ensured that the free convection effects were not present. The temperature-dependent thermophysical properties were considered for the numerical simulation. The volume concentrations of the nanofluids were kept below 2% (i.e., 0.6%, 1.3% and 1.9%) as higher concentrations lead to agglomeration and sedimentation of nanoparticles. The various comparison criteria employed for the assessment of heat transfer enhancement were equal pumping power, equal velocity, equal mass flow rate and equal Reynolds number criterion. The enhancements in heat transfer coefficient (at ϕv = 1.9% and base fluid Re = 1380) were 7.7%, 4.9%, 3.6% and 3.3% when assessed on the basis of equal Reynolds number, equal velocity, equal mass flow rate and equal pumping power, respectively. It was found that the enhanced heat transfer of the nanofluids should preferably be examined on the basis of equal pumping power criterion instead of above-mentioned other three criteria. The discussion on the invalidity of three evaluation criteria based on Reynolds number, velocity and mass flow rate has also been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A s :

Nanomaterial aspect ratio

C p :

Heat capacity of fluid (J/kg K)

d :

Nanoparticle size (nm)

D :

Diameter of the circular channel (mm)

f :

Friction factor of fluid

g :

Gravitational acceleration (m/s2)

Gr:

Grashof number

Gz:

Graetz number

h :

Heat transfer coefficient (W/m2 K)

K B :

Boltzmann constant = 1.38066 × 1023 (J/K)

L :

Length of the channel (m)

L s :

Lateral dimension of nanosheets (nm)

l :

Length of MWCNTs

M :

Molecular weight (kg/mol)

\(\dot{m}\) :

Mass flow rate of fluid (kg/h)

N :

Avogadro number = 6.022 × 1023 (mol−1)

Nu:

Nusselt number

Q :

Discharge (m3/s)

P :

Pumping power (mW)

Pc :

Peclet number

∆P :

Pressure drop of fluid (Pa)

Pr:

Prandtl number

\(q^{\prime \prime }\) :

Heat flux (W/m2)

Ra*:

Modified Rayleigh number

Re:

Reynolds number

Ri*:

Modified Richardson number

T :

Temperature (K)

t :

Nanomaterial thickness (nm)

u :

Velocity vector

V :

Average velocity (m/s)

x :

Axial dimension

x/D :

Dimensionless distance in x direction

y :

Vertical dimension

\(\alpha\) :

Fluid thermal diffusivity (m2/s)

β :

Thermal expansion coefficient (1/K)

\(k\) :

Thermal conductivity (W/m K)

\(\rho\) :

Mass density (kg/m3)

\(\mu\) :

Dynamic viscosity (Pa s)

\(\phi\) :

Nanoparticle volume concentration

av:

Average value

bf:

Base fluid

b:

Bulk value

fr:

Base fluid freezing point

i:

Inlet

nf:

Nanofluid

np:

Nanoparticle

v:

Volume (concentration)

w:

Value at wall

AC:

Amorphous carbonic

CFD:

Computational fluid dynamics

DI:

Deionized

EG:

Ethylene glycol

HTC:

Heat transfer coefficient

FVM:

Finite volume method

GNP:

Graphene nanoparticles

PAO:

Polyalphaolefin

MWCNTs:

Multi-walled carbon nanotubes

NR:

Nanorod-shaped particles

OD:

Outer diameter of MWCNTs

SIMPLE:

Semi-implicit method for pressure-linked equations

SPN:

Spherical-shaped nanoparticles

References

  1. Farhan, M.; Saad Hameed, M.; Suleman, H.M.; Anwar, M.: Heat transfer enhancement in transformers by optimizing fin designs and using nanofluids. Arab. J. Sci. Eng. 44, 5733–5742 (2019)

    Google Scholar 

  2. Utomo, A.T.; Poth, H.; Robbins, P.T.; Pacek, A.W.: Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids. Int. J. Heat Mass Transf. 55, 7772–7781 (2012)

    Google Scholar 

  3. Hemmat Esfe, M.; Abbasian Arani, A.A.; Rezaie, M.; Yan, W.-M.; Karimipour, A.: Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int. Commun. Heat Mass Transf. 66, 189–195 (2015)

    Google Scholar 

  4. Aldulaimi, R.K.M.: An innovative receiver design for a parabolic trough solar collector using overlapped and reverse flow: an experimental study. Arab. J. Sci. Eng. 44, 7529–7539 (2019)

    Google Scholar 

  5. Talebi, F.; Mahmoudi, A.H.; Shahi, M.: Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid. Int. Commun. Heat Mass Transf. 37, 79–90 (2010)

    Google Scholar 

  6. Ariana, M.A.; Vaferi, B.; Karimi, G.: Prediction of thermal conductivity of alumina water-based nanofluids by artificial neural networks. Powder Technol. 278, 1–10 (2015)

    Google Scholar 

  7. Li, Q.; Xuan, Y.: Convective heat transfer and flow characteristics of Cu-water nanofluid. Sci. China Ser. E Technol. Sci. 45, 408–416 (2002)

    Google Scholar 

  8. Xuan, Y.; Li, Q.: Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transf. 125, 151–155 (2003)

    Google Scholar 

  9. Wen, D.; Ding, Y.: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Transf. 47, 5181–5188 (2004)

    Google Scholar 

  10. Maïga, S.E.B.; Palm, S.J.; Nguyen, C.T.; Roy, G.; Galanis, N.: Heat transfer enhancement by using nanofluids in forced convection flows. Int. J. Heat Fluid Flow 26, 530–546 (2005)

    Google Scholar 

  11. Zeinali Heris, S.; Nasr Esfahany, M.; Etemad, S.G.: Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int. J. Heat Fluid Flow 28, 203–210 (2007)

    Google Scholar 

  12. He, Y.; Men, Y.; Zhao, Y.; Lu, H.; Ding, Y.: Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions. Appl. Therm. Eng. 29, 1965–1972 (2009)

    Google Scholar 

  13. Hwang, K.S.; Jang, S.P.; Choi, S.U.S.: Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. Int. J. Heat Mass Transf. 52, 193–199 (2009)

    MATH  Google Scholar 

  14. Kim, D.; Kwon, Y.; Cho, Y.; Li, C.; Cheong, S.; Hwang, Y.; et al.: Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr. Appl. Phys. 9, e119–e123 (2009)

    Google Scholar 

  15. Bianco, V.; Chiacchio, F.; Manca, O.; Nardini, S.: Numerical investigation of nanofluids forced convection in circular tubes. Appl. Therm. Eng. 29, 3632–3642 (2009)

    Google Scholar 

  16. Rea, U.; McKrell, T.; Hu, L.-W.; Buongiorno, J.: Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. Int. J. Heat Mass Transf. 52, 2042–2048 (2009)

    Google Scholar 

  17. Fotukian, S.M.; Nasr Esfahany, M.: Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int. Commun. Heat Mass Transf. 37, 214–219 (2010)

    Google Scholar 

  18. Moraveji, M.K.; Darabi, M.; Haddad, S.M.H.; Davarnejad, R.: Modeling of convective heat transfer of a nanofluid in the developing region of tube flow with computational fluid dynamics. Int. Commun. Heat Mass Transf. 38, 1291–1295 (2011)

    Google Scholar 

  19. Tahir, S.; Mital, M.: Numerical investigation of laminar nanofluid developing flow and heat transfer in a circular channel. Appl. Therm. Eng. 39, 8–14 (2012)

    Google Scholar 

  20. Yu, L.; Liu, D.; Botz, F.: Laminar convective heat transfer of alumina-polyalphaolefin nanofluids containing spherical and non-spherical nanoparticles. Exp. Therm. Fluid Sci. 37, 72–83 (2012)

    Google Scholar 

  21. Zhang, H.; Shao, S.; Xu, H.; Tian, C.: Heat transfer and flow features of Al2O3ewater nanofluids flowing through a circular microchannel–Experimental results and correlations. Appl. Therm. Eng. 61, 86–92 (2013)

    Google Scholar 

  22. Heyhat, M.M.; Kowsary, F.; Rashidi, A.M.; Momenpour, M.H.; Amrollahi, A.: Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Exp. Therm. Fluid Sci. 44, 483–489 (2013)

    Google Scholar 

  23. Saha, G.; Paul, M.C.: Numerical analysis of the heat transfer behaviour of water based Al2O3 and TiO2 nanofluids in a circular pipe under the turbulent flow condition. Int. Commun. Heat Mass Transf. 56, 96–108 (2014)

    Google Scholar 

  24. Mahdavi, M.; Sharifpur, M.; Meyer, J.P.: CFD modelling of heat transfer and pressure drops for nanofluids through vertical tubes in laminar flow by Lagrangian and Eulerian approaches. Int. J. Heat Mass Transf. 88, 803–813 (2015)

    Google Scholar 

  25. Mehrali, M.; Sadeghinezhad, E.; Rosen, M.A.; Akhiani, A.R.; Tahan Latibari, S.; Mehrali, M.; et al.: Heat transfer and entropy generation for laminar forced convection flow of graphene nanoplatelets nanofluids in a horizontal tube. Int. Commun. Heat Mass Transf. 66, 23–31 (2015)

    Google Scholar 

  26. Sadeghinezhad, E.; Togun, H.; Mehrali, M.; Sadeghi Nejad, P.; Tahan Latibari, S.; Abdulrazzaq, T.; et al.: An experimental and numerical investigation of heat transfer enhancement for graphene nanoplatelets nanofluids in turbulent flow conditions. Int. J. Heat Mass Transf. 81, 41–51 (2015)

    Google Scholar 

  27. Yarmand, H.; Gharehkhani, S.; Ahmadi, G.; Shirazi, S.F.S.; Baradaran, S.; Montazer, E.; et al.: Graphene nanoplatelets–silver hybrid nanofluids for enhanced heat transfer. Energy Convers. Manag. 100, 419–428 (2015)

    Google Scholar 

  28. Minakov, A.V.; Lobasov, A.S.; Guzei, D.V.; Pryazhnikov, M.I.; Rudyak, V.Y.: The experimental and theoretical study of laminar forced convection of nanofluids in the round channel. Appl. Therm. Eng. 88, 140–148 (2015)

    Google Scholar 

  29. Moghadassi, A.; Ghomi, E.; Parvizian, F.: A numerical study of water based Al2O3 and Al2O3eCu hybrid nanofluid effect on forced convective heat transfer. Int. J. Therm. Sci. 92, 50–57 (2015)

    Google Scholar 

  30. Sadaghiani, A.K.; Yildiz, M.; Kosar, A.: Numerical modeling of convective heat transfer of thermally developing nanofluid flows in a horizontal microtube. Int. J. Therm. Sci. 109, 54–69 (2016)

    Google Scholar 

  31. Akhavan-Zanjani, H.; Saffar-Avval, M.; Mansourkiaei, M.; Sharif, F.; Ahadi, M.: Experimental investigation of laminar forced convective heat transfer of Graphene–water nanofluid inside a circular tube. Int. J. Therm. Sci. 100, 316–323 (2016)

    Google Scholar 

  32. Syam Sundar, L.; Otero-Irurueta, G.; Singh, M.K.; Sousa, A.C.M.: Heat transfer and friction factor of multi-walled carbon nanotubes–Fe3O4 nanocomposite nanofluids flow in a tube with/without longitudinal strip inserts. Int. J. Heat Mass Transf. 100, 691–703 (2016)

    Google Scholar 

  33. Liu, D.; Yu, L.: Single-phase thermal transport of nanofluids in a minichannel. J. Heat Transf. 133, 031009-031009-11 (2010)

    Google Scholar 

  34. Ebrahimnia-Bajestan, E.; Charjouei Moghadam, M.; Niazmand, H.; Daungthongsuk, W.; Wongwises, S.: Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers. Int. J. Heat Mass Transf. 92, 1041–1052 (2016)

    Google Scholar 

  35. Popiel, C.O.; Wojtkowiak, J.: Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0°C to 150°C). Heat Transf. Eng. 19, 87–101 (1998)

    Google Scholar 

  36. Vanaki, S.M.; Ganesan, P.; Mohammed, H.A.: Numerical study of convective heat transfer of nanofluids: a review. Renew. Sustain. Energy Rev. 54, 1212–1239 (2016)

    Google Scholar 

  37. Corcione, M.: “Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag. 52, 789–793 (2011)

    Google Scholar 

  38. Everts, M.; Meyer, J.P.: Flow regime maps for smooth horizontal tubes at a constant heat flux. Int. J. Heat Mass Transf. 117, 1274–1290 (2018)

    Google Scholar 

  39. Ramirez-Tijerina, R.; Rivera-Solorio, C.I.; Singh, J.; Nigam, K.D.P.: Numerical study of heat transfer enhancement for laminar nanofluids flow. Appl. Sci. 8, 2661 (2018)

    Google Scholar 

  40. Haghighi, E.B.; Saleemi, M.; Nikkam, N.; Khodabandeh, R.; Toprak, M.S.; Muhammed, M.; et al.: Accurate basis of comparison for convective heat transfer in nanofluids. Int. Commun. Heat Mass Transf. 52, 1–7 (2014)

    Google Scholar 

  41. Hamilton, R.L.; Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1, 187–191 (1962)

    Google Scholar 

  42. Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. 1. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  43. Keblinski, P.; Phillpot, S.R.; Choi, S.U.S.; Eastman, J.A.: Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 45, 855–863 (2002)

    MATH  Google Scholar 

  44. Terekhov, V.I.; Kalinina, S.V.; Lemanov, V.V.: The mechanism of heat transfer in nanofluids: state of the art (review). Part 1. Synthesis and properties of nanofluids. Thermophys. Aeromech. 17, 1–14 (2010)

    Google Scholar 

  45. Wong, K.V.; Castillo, M.J.: Heat transfer mechanisms and clustering in nanofluids. Adv. Mech. Eng. 2, 795478 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sajjad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajjad, M., Kamran, M.S., Ali, H. et al. Effect of Various Evaluation Criteria on Heat Transfer Enhancement of Nanofluids: A Case Study of Water-Based Cu2O Nanofluids. Arab J Sci Eng 45, 953–966 (2020). https://doi.org/10.1007/s13369-019-04187-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04187-w

Keywords

Navigation