Skip to main content
Log in

Numerical Analysis of Double-Diffusive Natural Convection in Shallow and Deep Open-Ended Cavities Using Lattice Boltzmann Method

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, the double-diffusive natural convection was studied in an open-ended cavity with the help of the lattice Boltzmann method. In this study, the driven force is developed by a change in the temperature gradient and concentration gradient on the left side of the cavity, which is the closed end. The temperature and concentration are maintained high at this end. The study is carried out for various parameters such as Rayleigh number (Ra) ranging from 103 to 106, aspect ratio (Ar) of 0.5, 1 and 2 and constant Prandtl number (Pr) of 0.7 and Lewis number (Le) of 2. The results are concentrated on for different buoyancy ratios (N = − 1, 0, 1) also. The results obtained are validated with existing literature results. The results show that when N value is negative, two buoyancy forces oppose each other and also the influence of concentration buoyancy force on fluid flow behavior gets dominant, and for aspect ratios 1 and 2, this effect was suppressed when Ra is increased but for the shallow cavity increasing in Ra helps the concentration force to become more dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

Ar:

Aspect ratio

C :

Nondimensional concentration

D :

Mass diffusivity (m2/s)

e :

Discrete lattice speed

F :

External force

f :

Distribution function for flow field

g :

Distribution function for temperature or concentration field

g y :

Gravitational acceleration (m/s2)

Le :

Lewis number

M :

Grid size

Ma :

Mach number

w :

Weight function

N :

Buoyancy ratio

Nu :

Local Nusselt number

Pr :

Prandtl number

Ra :

Rayleigh number

Sh :

Sherwood number

T :

Nondimensional temperature

u∙v :

Velocity components in x- and y-directions, respectively (m/s)

β C :

Concentration expansion coefficient (m3/kg)

β T :

Thermal expansion coefficient (K−1)

υ :

Kinematic viscosity (m2/s)

α :

Thermal diffusivity (m2/s)

ρ :

Fluid density (kg/m3)

ω :

Relaxation factor

avg:

Average

c :

Cold

f :

Flow

g :

Temperature or concentration

h :

Hot/high

i :

ith direction in the lattice structure

l :

Low

eq:

Equilibrium

References

  1. Moufekkir, F.; Moussaoui, M.A.; Mezrhab, A.; Lemonnier, D.; Naji, H.: MRT-lattice Boltzmann computations of natural convection and volumetric radiation in a tilted square enclosure. Int. J. Therm. Sci. 54, 125–141 (2012). https://doi.org/10.1016/j.ijthermalsci.2011.11.022

    Article  Google Scholar 

  2. Chen, H.; Chen, Y.; Hsieh, H.-T.; Zhang, J.: A lattice Boltzmann modeling of corrosion behavior and oxygen transport in the natural convection lead-alloy flow. Nucl. Eng. Des. 237, 1987–1998 (2007). https://doi.org/10.1016/j.nucengdes.2007.01.016

    Article  Google Scholar 

  3. Peng, Y.; Shu, C.; Chew, Y.: Simplified thermal lattice Boltzmann model for incompressible thermal flows. Phys. Rev. E 68, 1–8 (2003). https://doi.org/10.1103/PhysRevE.68.026701

    Article  Google Scholar 

  4. Mussa, M.A.; Abdullah, S.; NorAzwadi, C.S.; Muhamad, N.: Simulation of natural convection heat transfer in an enclosure by the lattice-Boltzmann method. Comput. Fluids 44, 162–168 (2011). https://doi.org/10.1016/j.compfluid.2010.12.033

    Article  MathSciNet  MATH  Google Scholar 

  5. Xuan, Y.; Zhao, K.; Li, Q.: Transient modeling of Cpl based on mesoscaled analysis by lattice Boltzmann method. Front. Heat Pipes (2010). https://doi.org/10.5098/fhp.v1.1.3003

    Article  Google Scholar 

  6. Nazari, M.; Louhghalam, L.; Kayhani, M.H.: Lattice Boltzmann simulation of double diffusive natural convection in a square cavity with a hot square obstacle. Chin. J. Chem. Eng. 23, 22–30 (2015). https://doi.org/10.1016/j.cjche.2014.10.008

    Article  Google Scholar 

  7. Kefayati, G.R.: Simulation of double diffusive natural convection and entropy generation of power-law fluids in an inclined porous cavity with Soret and Dufour effects (part II: entropy generation). Int. J. Heat Mass Transf. (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.043

    Article  Google Scholar 

  8. Kefayati, G.H.R.: Mesoscopic simulation of magnetic field effect on double-diffusive mixed convection of shear-thinning fluids in a two sided lid-driven cavity. J. Mol. Liq. 198, 413–429 (2014). https://doi.org/10.1016/j.molliq.2014.07.024

    Article  Google Scholar 

  9. Moufekkir, F.; Moussaoui, M.A.; Mezrhab, A.; Bouzidi, M.; Laraqi, N.: Study of double-diffusive natural convection and radiation in an inclined cavity using lattice Boltzmann method. Int. J. Therm. Sci. 63, 65–86 (2013). https://doi.org/10.1016/j.ijthermalsci.2012.07.015

    Article  Google Scholar 

  10. Corcione, M.; Grignaffini, S.; Quintino, A.: Correlations for the double-diffusive natural convection in square enclosures induced by opposite temperature and concentration gradients. Int. J. Heat Mass Transf. 81, 811–819 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.013

    Article  Google Scholar 

  11. Chamkha, A.J.: Effects of heat generation/absorption and thermophoresis on hydromagnetic flow with heat and mass transfer over a flat surface. Int. J. Numer. Methods Heat Fluid Flow 10, 432–448 (2000). https://doi.org/10.1108/09615530010327404

    Article  MATH  Google Scholar 

  12. Takhar, H.S.; Chamkha, A.J.; Nath, G.: Flow and mass transfer on a stretching sheet with a magnetic field and chemically reactive species. Int. J. Eng. Sci. 38, 1303–1314 (2000). https://doi.org/10.1016/S0020-7225(99)00079-8

    Article  MATH  Google Scholar 

  13. Mohamad, A.A.; El-Ganaoui, M.; Bennacer, R.: Lattice Boltzmann simulation of natural convection in an open ended cavity. Int. J. Therm. Sci. 48, 1870–1875 (2009). https://doi.org/10.1016/j.ijthermalsci.2009.02.004

    Article  Google Scholar 

  14. Mohamad, A.A.; Bennacer, R.; El-Ganaoui, M.: Double dispersion, natural convection in an open end cavity simulation via Lattice Boltzmann Method. Int. J. Therm. Sci. 49, 1944–1953 (2010). https://doi.org/10.1016/j.ijthermalsci.2010.05.022

    Article  Google Scholar 

  15. Haghshenas, A.; Nasr, M.R.; Rahimian, M.H.: Numerical simulation of natural convection in an open-ended square cavity filled with porous medium by lattice Boltzmann method. Int. Commun. Heat Mass Transf. 37, 1513–1519 (2010). https://doi.org/10.1016/j.icheatmasstransfer.2010.08.006

    Article  Google Scholar 

  16. Kefayati, G.H.R.; Hosseinizadeh, S.F.; Gorji, M.; Sajjadi, H.: Lattice Boltzmann simulation of natural convection in an open enclosure subjugated to water/copper nanofluid. Int. J. Therm. Sci. 52, 91–101 (2012). https://doi.org/10.1016/j.ijthermalsci.2011.09.005

    Article  Google Scholar 

  17. Kefayati, G.H.R.: Double-diffusive natural convection and entropy generation of Bingham fluid in an inclined cavity. Int. J. Heat Mass Transf. 116, 762–812 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.065

    Article  Google Scholar 

  18. Hussein, A.K.; Ashorynejad, H.R.; Shikholeslami, M.; Sivasankaran, S.: Lattice Boltzmann simulation of natural convection heat transfer in an open enclosure filled with Cu–water nanofluid in a presence of magnetic field. Nucl. Eng. Des. 268, 10–17 (2014). https://doi.org/10.1016/j.nucengdes.2013.11.072

    Article  Google Scholar 

  19. Gangawane, K.M.; Bharti, R.P.; Kumar, S.: Lattice Boltzmann analysis of natural convection in a partially heated open ended enclosure for different fluids. J. Taiwan Inst. Chem. Eng. 49, 27–39 (2015). https://doi.org/10.1016/j.jtice.2014.11.020

    Article  Google Scholar 

  20. Gangawane, K.M.: Effect of angle of applied magnetic field on natural convection in an open ended cavity with partially active walls. Chem. Eng. Res. Des. 127, 22–34 (2017). https://doi.org/10.1016/j.cherd.2017.09.006

    Article  Google Scholar 

  21. Mejri, I.; Mahmoudi, A.: MHD natural convection in a nanofluid-filled open enclosure with a sinusoidal boundary condition. Chem. Eng. Res. Des. 98, 1–16 (2015). https://doi.org/10.1016/j.cherd.2015.03.028

    Article  Google Scholar 

  22. Arbin, N.; Saleh, H.; Hashim, I.; Chamkha, A.J.: Numerical investigation of double-diffusive convection in an open cavity with partially heated wall via heatline approach. Int. J. Therm. Sci. 100, 169–184 (2016). https://doi.org/10.1016/j.ijthermalsci.2015.09.017

    Article  Google Scholar 

  23. Mohammed, A.A: Lattice Boltzmann method: fundamentals and engineering applications with computer codes. Springer (2012). https://doi.org/10.1007/978-0-85729-455-5

    Book  Google Scholar 

  24. Bhatnagar, P.L.; Gross, E.P.; Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954). https://doi.org/10.1103/physrev.94.511

    Article  MATH  Google Scholar 

  25. Mohamad, A.A.; Kuzmin, A.: A critical evaluation of force term in lattice Boltzmann method, natural convection problem. Int. J. Heat Mass Transf. 53, 990–996 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.014

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Satheesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arun, S., Satheesh, A. & Chamkha, A.J. Numerical Analysis of Double-Diffusive Natural Convection in Shallow and Deep Open-Ended Cavities Using Lattice Boltzmann Method. Arab J Sci Eng 45, 861–876 (2020). https://doi.org/10.1007/s13369-019-04156-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04156-3

Keywords

Navigation