Skip to main content
Log in

Applications of lattice Boltzmann method for double-diffusive convection in the cavity: a review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Over the years, the lattice Boltzmann method (LBM) has been evolved as a substitute and efficient numerical tool to mimic the single/multiphase fluid flow and transport problems. LBM has been mainly advantageous in multi-physics and multiphase flow applications. On the other hand, double-diffusive convection has extensive occurrence in domestic and industrial activities. The type of convection in which the combined effect of temperature and concentration gradients (resulting in the density variation) on fluid's hydrodynamic and thermal characteristics is called double-diffusive convection (DDC). The importance of DDC has been recognized in various engineering applications, and it has thoroughly been investigated experimentally, theoretically, and numerically. This paper is proposed to deliver a brief review of double-diffusive convection by computational approach (mainly lattice Boltzmann method and Navier–Stokes equation-based solvers). This review explores the illustration of some of the practical applications of DDC, studies of DDC in various heated cavities. The paper also gives insights into LBM formulation of DDC under various external force conditions. A table compromising various empirical correlations of the average Nusselt numbers and average Sherwood numbers as a function of different governing parameters has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A R :

Aspect ratio, dimensionless

Da :

Darcy number, dimensionless

N :

Buoyancy ratio

F :

External force, N

B :

Magnetic field, Tesla = N/Am2

D :

Mass diffusivity, \({\mathrm{m}}^{2}/\mathrm{s}\)

Ma :

Mach number

Bi :

Biot number, dimensionless

Sc :

Schmidt number, dimensionless

\(f\) :

Flow field distribution function

\({g}_{y}\) :

Gravitational acceleration \(\left(\mathrm{m}/{\mathrm{s}}^{2}\right)\)

\(\overline{Nu}\) :

Average Nusselt number, dimensionless

\(\overline{Sh}\) :

Average Sherwood number, dimensionless

Nu :

Local Nusselt number, dimensionless

Sh :

Local Sherwood number, dimensionless

g :

Distribution function for the temperature field

h :

Distribution function for the concentration field

e k :

Discrete lattice in an ith direction

w k :

Mass factor in the respective direction

Le :

Lewis number, dimensionless

Ra :

Rayleigh number, dimensionless

Re :

Reynold number, dimensionless

Pr :

Prandtl number, dimensionless

Ri :

Richardson number, dimensionless

Gr :

Grashof number, dimensionless

Ha :

Hartmann number, dimensionless

Da :

Darcy number, dimensionless

Be :

Bejan number, dimensionless

Ec :

Eckert number, dimensionless

T :

Temperature, K

C :

Dimensional concentration, mol/m3

M :

Nodal number

\(\sigma\) :

Electrical conductivity, s/m

n :

Power-law-index, dimensionless

\({D}_{f}\) :

Dufour parameter, dimensionless

Sr :

Soret parameter, dimensionless

x, y :

Cartesian coordinates, m

t :

Time, sec

p :

Pressure, Pa

u :

Velocity in the x-direction, m s−1

v :

Velocity in the y-direction, m s−1

\(\theta\) :

Dimensioless temperature

S :

Dimensionless concentration

U :

Dimensionless velocity

P :

Dimensionless pressure

\(\beta_{T}\) :

Thermal expansion coefficient, K1

\(\beta_{C}\) :

Concentration expansion coefficient, m3 kg−1

\(\omega\) :

Relaxation parameter

\(\rho\) :

Fluid density, kg m−3

\(\upsilon\) :

Kinematic viscosity, m2 s−1

\(\alpha\) :

Thermal diffusivity, m2 s−1

\(\Omega\) :

Collision operator

\(\tau\) :

Relaxation time

\(\omega_{f}\) :

Relaxation factor for fluid field

\(\omega_{g}\) :

Relaxation factor for thermal field

\(\omega_{h}\) :

Relaxation factor for concentration field

References

  1. Schmitt RW. Double diffusion in oceanography. Annu Rev Fluid Mech. 1994;26(1):255–85.

    Article  Google Scholar 

  2. Kefayati G. Double-diffusive natural convection and entropy generation of Bingham fluid in an inclined cavity. Int J Heat Mass Transf. 2018;116:762–812.

    Article  Google Scholar 

  3. Ren Q, Chan CL. Numerical study of double-diffusive convection in a vertical cavity with Soret and Dufour effects by lattice Boltzmann method on GPU. Int J Heat Mass Transf. 2016;93:538–53.

    Article  Google Scholar 

  4. Chen S, Tölke J, Krafczyk M. Numerical investigation of double-diffusive (natural) convection in vertical annuluses with opposing temperature and concentration gradients. Int J Heat Fluid Flow. 2010;31(2):217–26.

    Article  CAS  Google Scholar 

  5. Arbin N, Saleh H, Hashim I, Chamkha AJ. Numerical investigation of double-diffusive convection in an open cavity with partially heated wall via heatline approach. Int J Therm Sci. 2016;100:169–84.

    Article  Google Scholar 

  6. Kefayati GR. Thermosolutal natural convection of viscoplastic fluids in an open porous cavity. Int J Heat Mass Transf. 2019;138:401–19.

    Article  Google Scholar 

  7. Huppert HE, Turner JS. Double-diffusive convection. J Fluid Mech. 1981;106:299–329.

    Article  Google Scholar 

  8. Nikbakhti R, Khodakhah J. Numerical investigation of double diffusive buoyancy forces induced natural convection in a cavity partially heated and cooled from sidewalls. Eng Sci Technol Int J. 2016;19(1):322–37.

    Google Scholar 

  9. Mohamad A, Bennacer R, El-Ganaoui M. Double dispersion, natural convection in an open end cavity simulation via Lattice Boltzmann Method. Int J Therm Sci. 2010;49(10):1944–53.

    Article  Google Scholar 

  10. Sathiyamoorthi A, Anbalagan S. Mesoscopic analysis of heatline and massline during double-diffusive MHD natural convection in an inclined cavity. Chin J Phys. 2018;56(5):2155–72.

    Article  CAS  Google Scholar 

  11. Borjini MN, Kolsi L, Daous N, Aissia HB. Hydromagnetic double-diffusive laminar natural convection in a radiatively participating fluid. Numer Heat Transf A Appl. 2005;48(5):483–506.

    Article  Google Scholar 

  12. Science Wo. Number of research article publised in double-diffusive convection 2021, October. https://www.webofscience.com/wos/woscc/summary/1c278a7e-e4ca-43c2-b658-b13f21668404-258ff7e9/relevance/1.

  13. Rahman M, Öztop HF, Ahsan A, Kalam M, Varol Y. Double-diffusive natural convection in a triangular solar collector. Int Commun Heat Mass Transf. 2012;39(2):264–9.

    Article  Google Scholar 

  14. Kefayati GR. Mesoscopic simulation of double-diffusive mixed convection of pseudoplastic fluids in an enclosure with sinusoidal boundary conditions. Comput Fluids. 2014;97:94–109.

    Article  Google Scholar 

  15. Xu H, Wang Z, Karimi F, Yang M, Zhang Y. Numerical simulation of double diffusive mixed convection in an open enclosure with different cylinder locations. Int Commun Heat Mass Transf. 2014;52:33–45.

    Article  Google Scholar 

  16. Reddy N, Murugesan K. Magnetic field influence on double-diffusive natural convection in a square cavity: a numerical study. Numer Heat Transf A Appl. 2017;71(4):448–75.

    Article  CAS  Google Scholar 

  17. Cheddadi B, Aboulaich R, Cheddadi A. Numerical study of double diffusive convection in a cylindrical annular geometry validation and mesh sensibility. Int J Comput Sci Iss. 2014;11(1):96.

    Google Scholar 

  18. Nithyadevi N, Yang R-J. Double diffusive natural convection in a partially heated enclosure with Soret and Dufour effects. Int J Heat Fluid Flow. 2009;30(5):902–10.

    Article  CAS  Google Scholar 

  19. Ghachem K, Kolsi L, Mâatki C, Hussein AK, Borjini MN. Numerical simulation of three-dimensional double diffusive free convection flow and irreversibility studies in a solar distiller. Int Commun Heat Mass Transf. 2012;39(6):869–76.

    Article  CAS  Google Scholar 

  20. Al-Rashed AA, Oztop HF, Kolsi L, Boudjemline A, Almeshaal MA, Ali ME, et al. CFD study of heat and mass transfer and entropy generation in a 3D solar distiller heated by an internal column. Int J Mech Sci. 2019;152:280–8.

    Article  Google Scholar 

  21. Kolsi L, Al-Rashed A, Aich W, Ait Messaoudene N, Aydi A, Borjini MN. Heat and mass transfer and entropy generation inside 3D trapezoidal solar distiller. Front Heat Mass Transf. 2017;9:1.

    Article  CAS  Google Scholar 

  22. Ghachem K, Maatki C, Kolsi L, Alshammari N, Oztop HF, Borjini MN, et al. Numerical study of heat and mass transfer optimization in a 3D inclined solar distiller. Therm Sci. 2017;21(6):2469–80.

    Article  Google Scholar 

  23. Maatki C, Kolsi L, Ghachem K, Alghamdi A, Al-Rashed A, Borjini MN. Numerical analysis of electromagnetic parameters of thermal dominated double diffusive magneto-convection. J Eng Res. 2017;5:3.

    Google Scholar 

  24. Singh A, Pardeshi R, Basu B. Modelling of convection during solidification of metal and alloys. Sadhana. 2001;26(1):139–62.

    Article  CAS  Google Scholar 

  25. Jevons W II. On the cirrous form of cloud. Lond Edinb Philos Mag J Sci. 1857;14(90):22–35.

    Article  Google Scholar 

  26. Van Thang P, Chopard B, Lefèvre L, Ondo DA, Mendes E. Study of the 1D lattice Boltzmann shallow water equation and its coupling to build a canal network. J Comput Phys. 2010;229(19):7373–400.

    Article  CAS  Google Scholar 

  27. Gregg M. Mixing in the thermohaline staircase east of Barbados. Elsevier Oceanographic series. Amsterdam: Elsevier; 1988. p. 453–70.

    Google Scholar 

  28. Schmitt RW. The ocean’s salt fingers. Sci Am. 1995;272(5):70–5.

    Article  Google Scholar 

  29. Stellmach S, Traxler A, Garaud P, Brummell N, Radko T. Dynamics of fingering convection Part 2 The formation of thermohaline staircases. J Fluid Mech. 2011;677:554–71.

    Article  CAS  Google Scholar 

  30. Huppert HE, Sparks RSJ. Double-diffusive convection due to crystallization in magmas. Annu Rev Earth Planet Sci. 1984;12(1):11–37.

    Article  CAS  Google Scholar 

  31. McBirney AR. Mixing and unmixing of magmas. J Volcanol Geotherm Res. 1980;7(3–4):357–71.

    Article  CAS  Google Scholar 

  32. Sparks RSJ, Huppert HE. Density changes during the fractional crystallization of basaltic magmas: fluid dynamic implications. Contrib Mineral Petrol. 1984;85(3):300–9.

    Article  CAS  Google Scholar 

  33. Gubbins D, Masters T, Jacobs J. Thermal evolution of the Earth’s core. Geophys J Int. 1979;59(1):57–99.

    Article  CAS  Google Scholar 

  34. Roberts DLP. Compositional convection and the gravitationally powered dynamo. Astron Astrophys Chem. 1983;1983:297–327.

    Google Scholar 

  35. Hildreth W. The Bishop Tuff: evidence for the origin of compositional zonation in silicic magma chambers. Geol Soc Am Spec Pap. 1979;180:43–75.

    CAS  Google Scholar 

  36. Yang J, Chen R, Ding H, Guo J, Han J, Hengzhi F. Mechanism and evolution of heat transfer in mushy zone during cold crucible directionally solidifying TiAl alloys. Int J Heat Mass Transf. 2013;63:216–23.

    Article  CAS  Google Scholar 

  37. Xie M, Ge S, Sun W. Numerical simulation of double-diffusive dynamical model of a solar pond considering the effect of turbidity and wind. J Therm Sci. 2006;15(2):168–74.

    Article  Google Scholar 

  38. Mansour RB, Nguyen CT, Galanis N. Numerical study of transient heat and mass transfer and stability in a salt-gradient solar pond. Int J Therm Sci. 2004;43(8):779–90.

    Article  CAS  Google Scholar 

  39. Atkinson JF, Harleman D. A wind-mixed layer model for solar ponds. Sol Energy. 1983;31(3):243–59.

    Article  Google Scholar 

  40. Suárez F, Childress A, Tyler S. Temperature evolution of an experimental salt-gradient solar pond. J Water Clim Change. 2010;1(4):246–50.

    Article  CAS  Google Scholar 

  41. Xu H, Li B, Chen J, Lou Q, Yan Z, Yang M. Lattice BGK simulations of the double diffusive mixed convection in an enclosure with different outlet locations. Int J Heat Mass Transf. 2016;92:158–72.

    Article  Google Scholar 

  42. He B, Lu S, Gao D, Chen W, Lin F. Lattice Boltzmann simulation of double diffusive natural convection in heterogeneously porous media of a fluid with temperature-dependent viscosity. Chin J Phys. 2020;63:186–200.

    Article  CAS  Google Scholar 

  43. Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech. 1998;30(1):329–64.

    Article  Google Scholar 

  44. Mohamad A, El-Ganaoui M, Bennacer R. Lattice Boltzmann simulation of natural convection in an open ended cavity. Int J Therm Sci. 2009;48(10):1870–5.

    Article  Google Scholar 

  45. Arun S, Satheesh A. Mesoscopic analysis of MHD double diffusive natural convection and entropy generation in an enclosure filled with liquid metal. J Taiwan Inst Chem Eng. 2019;95:155–73.

    Article  CAS  Google Scholar 

  46. Perumal DA, Dass AK. A Review on the development of lattice Boltzmann computation of macro fluid flows and heat transfer. Alex Eng J. 2015;54(4):955–71.

    Article  Google Scholar 

  47. Sidik NAC, Mamat R. Recent progress on lattice Boltzmann simulation of nanofluids: a review. Int Commun Heat Mass Transf. 2015;66:11–22.

    Article  CAS  Google Scholar 

  48. Donath S, Mecke K, Rabha S, Buwa V, Rüde U. Verification of surface tension in the parallel free surface lattice Boltzmann method in waLBerla. Comput Fluids. 2011;45(1):177–86.

    Article  Google Scholar 

  49. Bohn C, Scott SA, Dennis JS, Müller C. Validation of a lattice Boltzmann model for gas–solid reactions with experiments. J Comput Phys. 2012;231(16):5334–50.

    Article  CAS  Google Scholar 

  50. Caiazzo A, Junk M, Rheinländer M. Comparison of analysis techniques for the lattice Boltzmann method. Comput Math Appl. 2009;58(5):883–97.

    Article  Google Scholar 

  51. Kang X, Liao Q, Zhu X, Yang Y. Non-equilibrium extrapolation method in the lattice Boltzmann simulations of flows with curved boundaries (non-equilibrium extrapolation of LBM). Appl Therm Eng. 2010;30(13):1790–6.

    Article  Google Scholar 

  52. Jahanshaloo L, Pouryazdanpanah E, Che Sidik NA. A review on the application of the lattice Boltzmann method for turbulent flow simulation. Numer Heat Transf A Appl. 2013;64(11):938–53.

    Article  Google Scholar 

  53. Basha M, Nor Azwadi CS. Regularized lattice Boltzmann simulation of laminar mixed convection in the entrance region of 2-D channels. Numer Heat Transf A Appl. 2013;63(11):867–78.

    Article  CAS  Google Scholar 

  54. Mohamad A. Lattice Boltzmann Method. New York: Springer; 2011.

    Book  Google Scholar 

  55. Song S, Rong L, Dong K, Liu X, Le Clech P, Shen Y. Particle-scale modelling of fluid velocity distribution near the particles surface in sand filtration. Water Res. 2020;177: 115758.

    Article  CAS  PubMed  Google Scholar 

  56. Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids. 1997;9(6):1591–8.

    Article  CAS  Google Scholar 

  57. Chang C, Liu C-H, Lin C-A. Boundary conditions for lattice Boltzmann simulations with complex geometry flows. Comput Math Appl. 2009;58(5):940–9.

    Article  Google Scholar 

  58. Li L, Mei R, Klausner JF. Boundary conditions for thermal lattice Boltzmann equation method. J Comput Phys. 2013;237:366–95.

    Article  Google Scholar 

  59. Mejri I, Mahmoudi A. MHD natural convection in a nanofluid-filled open enclosure with a sinusoidal boundary condition. Chem Eng Res Des. 2015;98:1–16.

    Article  CAS  Google Scholar 

  60. Alexander FJ, Chen S, Sterling J. Lattice boltzmann thermohydrodynamics. Phys Rev E. 1993;47(4):R2249.

    Article  CAS  Google Scholar 

  61. He X, Chen S, Doolen GD. A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys. 1998;146(1):282–300.

    Article  Google Scholar 

  62. Mohamad A, Kuzmin A. A critical evaluation of force term in lattice Boltzmann method, natural convection problem. Int J Heat Mass Transf. 2010;53(5–6):990–6.

    Article  Google Scholar 

  63. Nazari M, Louhghalam L, Kayhani MH. Lattice Boltzmann simulation of double diffusive natural convection in a square cavity with a hot square obstacle. Chin J Chem Eng. 2015;23(1):22–30.

    Article  CAS  Google Scholar 

  64. Dixit H, Babu V. Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method. Int J Heat Mass Transf. 2006;49(3–4):727–39.

    Article  Google Scholar 

  65. Seta T, Takegoshi E, Okui K. Lattice Boltzmann simulation of natural convection in porous media. Math Comput Simul. 2006;72(2–6):195–200.

    Article  Google Scholar 

  66. Qiang W, Cao H, editors. Double diffusive natural convection in hydrothermal systems: numerical simulation by lattice Boltzmann method. International symposium on intelligence computation and applications. New York: Springer; 2012.

    Google Scholar 

  67. Wang B, Liu Y, Li L. Nanofluid double diffusive natural convection in a porous cavity under multiple force fields. Numer Heat Transf A Appl. 2020;77(4):343–60.

    Article  CAS  Google Scholar 

  68. Ma C. Lattice BGK simulations of double diffusive natural convection in a rectangular enclosure in the presences of magnetic field and heat source. Nonlinear Anal Real World Appl. 2009;10(5):2666–78.

    Article  Google Scholar 

  69. Chen S, Liu H, Zheng C. Numerical study of turbulent double-diffusive natural convection in a square cavity by LES-based lattice Boltzmann model. Int J Heat Mass Transf. 2012;55(17–18):4862–70.

    Article  Google Scholar 

  70. Kefayati GR. Double-diffusive mixed convection of pseudoplastic fluids in a two sided lid-driven cavity using FDLBM. J Taiwan Inst Chem Eng. 2014;45(5):2122–39.

    Article  CAS  Google Scholar 

  71. Moufekkir F, Moussaoui M, Mezrhab A, Naji H, Bouzidi M. Numerical study of double diffusive convection in presence of radiating gas in a square cavity. Fluid Dyn Mater Process. 2012;8(2):129–53.

    Google Scholar 

  72. Moufekkir F, Moussaoui M, Mezrhab A, Bouzidi M, Laraqi N. Study of double-diffusive natural convection and radiation in an inclined cavity using lattice Boltzmann method. Int J Therm Sci. 2013;63:65–86.

    Article  Google Scholar 

  73. Kefayati GR. Mesoscopic simulation of magnetic field effect on double-diffusive mixed convection of shear-thinning fluids in a two sided lid-driven cavity. J Mol Liquids. 2014;198:413–29.

    Article  CAS  Google Scholar 

  74. Chen S, Yang B, Xiao X, Zheng C. Analysis of entropy generation in double-diffusive natural convection of nanofluid. Int J Heat Mass Transf. 2015;87:447–63.

    Article  CAS  Google Scholar 

  75. Chen S, Yang B, Luo KH, Xiong X, Zheng C. Double diffusion natural convection in a square cavity filled with nanofluid. Int J Heat Mass Transf. 2016;95:1070–83.

    Article  Google Scholar 

  76. Wang L, Chai Z, Shi B. Regularized lattice Boltzmann simulation of double-diffusive convection of power-law nanofluids in rectangular enclosures. Int J Heat Mass Transf. 2016;102:381–95.

    Article  CAS  Google Scholar 

  77. Ghachem K, Kolsi L, Maatki C, Alghamdi A, Oztop HF, Borjini MN, et al. Numerical simulation of three-dimensional double diffusive convection in a lid-driven cavity. Int J Therm Sci. 2016;110:241–50.

    Article  Google Scholar 

  78. Wang L, Shi B, Chai Z, Yang X. Regularized lattice Boltzmann model for double-diffusive convection in vertical enclosures with heating and salting from below. Appl Therm Eng. 2016;103:365–76.

    Article  Google Scholar 

  79. Chen S, Yang B, Zheng C. Simulation of double diffusive convection in fluid-saturated porous media by lattice Boltzmann method. Int J Heat Mass Transf. 2017;108:1501–10.

    Article  Google Scholar 

  80. Kefayati G. Lattice Boltzmann simulation of double-diffusive natural convection of viscoplastic fluids in a porous cavity. Phys Fluids. 2019;31(1): 013105.

    Article  CAS  Google Scholar 

  81. He B, Lu S, Gao D, Chen W, Li X. Lattice Boltzmann simulation of double diffusive natural convection of nanofluids in an enclosure with heat conducting partitions and sinusoidal boundary conditions. Int J Mech Sci. 2019;161: 105003.

    Article  Google Scholar 

  82. Ng T, Su Y. Non-dimensional lattice Boltzmann simulations on pore scale double diffusive natural convection in an enclosure filled with random porous media. Int J Heat Mass Transf. 2019;134:521–38.

    Article  Google Scholar 

  83. Kefayati GR, Tang H. Three-dimensional Lattice Boltzmann simulation on thermosolutal convection and entropy generation of Carreau-Yasuda fluids. Int J Heat Mass Transf. 2019;131:346–64.

    Article  Google Scholar 

  84. Kefayati G. An immersed boundary-lattice Boltzmann method for thermal and thermo-solutal problems of Newtonian and non-Newtonian fluids. Phys Fluids. 2020;32(7): 073103.

    Article  CAS  Google Scholar 

  85. Lu S, He B, Gao D, Chen W, Li X. Numerical simulation of double-diffusive natural convection in an enclosure in the presence of magnetic field with heat-conducting partition using lattice Boltzmann method. J Therm Anal Calorim. 2020;2020:1–18.

    Google Scholar 

  86. Mliki B, Abbassi MA, Omri A. Lattice Boltzmann simulation of MHD double dispersion natural convection in a c-shaped enclosure in the presence of a nanofluid. Fluid Dyn Mater Process. 2015;11(1):87–114.

    Google Scholar 

  87. Liu Q, Feng X-B, Xu X-T, He Y-L. Multiple-relaxation-time lattice Boltzmann model for double-diffusive convection with Dufour and Soret effects. Int J Heat Mass Transf. 2019;139:713–9.

    Article  Google Scholar 

  88. Arun S, Satheesh A, Chamkha AJ. Numerical analysis of double-diffusive natural convection in shallow and deep open-ended cavities using lattice Boltzmann method. Arab J Sci Eng. 2020;45(2):861–76.

    Article  CAS  Google Scholar 

  89. Kefayati G. Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (part II: entropy generation). Energy. 2016;107:917–59.

    Article  Google Scholar 

  90. Kefayati GR, Tang H. Mesoscopic simulation of double-diffusive natural convection and entropy generation of Bingham fluid in an open cavity. Eur J Mech B Fluids. 2018;69:1–45.

    Article  Google Scholar 

  91. Kefayati GR, Tang H. Double-diffusive natural convection and entropy generation of Carreau fluid in a heated enclosure with an inner circular cold cylinder (Part I: Heat and mass transfer). Int J Heat Mass Transf. 2018;120:731–50.

    Article  Google Scholar 

  92. Xu H, Wang T, Qu Z, Chen J, Li B. Lattice Boltzmann simulation of the double diffusive natural convection and oscillation characteristics in an enclosure filled with porous medium. Int Commun Heat Mass Transf. 2017;81:104–15.

    Article  CAS  Google Scholar 

  93. Xu H, Luo Z, Lou Q, Chen J. Numerical simulation of heat and mass transfer through porous solid with lattice Boltzmann method. Proc Eng. 2017;205:787–93.

    Article  Google Scholar 

  94. Hasnaoui S, Amahmid A, Beji H, Raji A, Hasnaoui M, El Mansouri A, et al. Hybrid lattice Boltzmann finite difference simulation of Soret convection flows in a square cavity with internal heat generation. Numer Heat Transf A Appl. 2018;74(1):948–73.

    Article  CAS  Google Scholar 

  95. Luo Z, Xu H. Numerical simulation of heat and mass transfer through microporous media with lattice Boltzmann method. Therm Sci Eng Prog. 2019;9:44–51.

    Article  Google Scholar 

  96. Afzalabadi A, Bordbar V, Amooie MA. Lattice Boltzmann simulation of magneto-hydrodynamic double-diffusive natural convection in an enclosure with internal heat and solute source using nanofluids. SN Appl Sci. 2020;2(10):1–19.

    Article  CAS  Google Scholar 

  97. Safa R, Goharrizi AS, Jafari S, Javaran EJ. Investigation of double-diffusive mixed convection effect on the particles dissolution in the shear flow using coupled SPM–LBM. J Therm Anal Calorim. 2020;2020:1–18.

    Google Scholar 

  98. Kefayati GR. FDLBM simulation of double-diffusive mixed convection of shear-thinning fluids between two-square concentric duct annuli. Heat Mass Transf. 2015;51(11):1505–21.

    Article  CAS  Google Scholar 

  99. Capone F, Gentile M, Hill AA. Double-diffusive penetrative convection simulated via internal heating in an anisotropic porous layer with throughflow. Int J Heat Mass Transf. 2011;54(7–8):1622–6.

    Article  Google Scholar 

  100. Baytas A, Baytas A, Ingham D, Pop I. Double diffusive natural convection in an enclosure filled with a step type porous layer: non-darcy flow. Int J Therm Sci. 2009;48(4):665–73.

    Article  Google Scholar 

  101. Teamah MA, El-Maghlany WM. Numerical simulation of double-diffusive mixed convective flow in rectangular enclosure with insulated moving lid. Int J Therm Sci. 2010;49(9):1625–38.

    Article  CAS  Google Scholar 

  102. Chamkha AJ, Mansour M, Ahmed SE. Double-diffusive natural convection in inclined finned triangular porous enclosures in the presence of heat generation/absorption effects. Heat Mass Transf. 2010;46(7):757–68.

    Article  Google Scholar 

  103. Khadiri A, Amahmid A, Hasnaoui M, Rtibi A. Soret effect on double-diffusive convection in a square porous cavity heated and salted from below. Numer Heat Transf A Appl. 2010;57(11):848–68.

    Article  Google Scholar 

  104. Wang S, Tan W. Stability analysis of soret-driven double-diffusive convection of Maxwell fluid in a porous medium. Int J Heat Fluid Flow. 2011;32(1):88–94.

    Article  Google Scholar 

  105. Esfahani JA, Bordbar V. Double diffusive natural convection heat transfer enhancement in a square enclosure using nanofluids. J Nanotechnol Eng Med. 2011;2:2.

    Article  Google Scholar 

  106. Kuznetsov GV, Sheremet MA. A numerical simulation of double-diffusive conjugate natural convection in an enclosure. Int J Therm Sci. 2011;50(10):1878–86.

    Article  Google Scholar 

  107. Bhuvaneswari M, Sivasankaran S, Kim Y. Numerical study on double diffusive mixed convection with a Soret effect in a two-sided lid-driven cavity. Numer Heat Transf A Appl. 2011;59(7):543–60.

    Article  Google Scholar 

  108. Abidi A, Kolsi L, Borjini MN, Aissia HB. Effect of radiative heat transfer on three-dimensional double diffusive natural convection. Numer Heat Transf A Appl. 2011;60(9):785–809.

    Article  Google Scholar 

  109. Parvin S, Nasrin R, Alim M, Hossain N. Double-diffusive natural convection in a partially heated enclosure using a nanofluid. Heat Transf Asian Res. 2012;41(6):484–97.

    Article  Google Scholar 

  110. Al-Farhany K, Turan A. Numerical study of double diffusive natural convective heat and mass transfer in an inclined rectangular cavity filled with porous medium. Int Commun Heat Mass Transf. 2012;39(2):174–81.

    Article  Google Scholar 

  111. Nikbakhti R, Rahimi AB. Double-diffusive natural convection in a rectangular cavity with partially thermally active side walls. J Taiwan Inst Chem Eng. 2012;43(4):535–41.

    Article  CAS  Google Scholar 

  112. Mahapatra TR, Pal D, Mondal S. Effects of buoyancy ratio on double-diffusive natural convection in a lid-driven cavity. Int J Heat Mass Transf. 2013;57(2):771–85.

    Article  Google Scholar 

  113. Rahman M, Saidur R, Mekhilef S, Uddin MB, Ahsan A. Double-diffusive buoyancy induced flow in a triangular cavity with corrugated bottom wall: effects of geometrical parameters. Int Commun Heat Mass Transf. 2013;45:64–74.

    Article  Google Scholar 

  114. Maatki C, Kolsi L, Oztop HF, Chamkha A, Borjini MN, Aissia HB, et al. Effects of magnetic field on 3D double diffusive convection in a cubic cavity filled with a binary mixture. Int Commun Heat Mass Transf. 2013;49:86–95.

    Article  Google Scholar 

  115. Chen Z-W, Zhan J-M, Li Y-S, Luo Y-Y, Cai S. Double-diffusive buoyancy convection in a square cuboid with horizontal temperature and concentration gradients. Int J Heat Mass Transf. 2013;60:422–31.

    Article  Google Scholar 

  116. Harzallah HS, Jbara A, Slimi K. Double-diffusive natural convection in anisotropic porous medium bounded by finite thickness walls: validity of local thermal equilibrium assumption. Transp Porous Media. 2014;103(2):207–31.

    Article  CAS  Google Scholar 

  117. Bouras A, Djezzar M, Naji H, Ghernoug C. Numerical computation of double-diffusive natural convective flow within an elliptic-shape enclosure. Int Commun Heat Mass Transf. 2014;57:183–92.

    Article  Google Scholar 

  118. Arani AA, Kakoli E, Hajialigol N. Double-diffusive natural convection of Al2O3-water nanofluid in an enclosure with partially active side walls using variable properties. J Mech Sci Technol. 2014;28(11):4681–91.

    Article  Google Scholar 

  119. Qin Q, Xia Z, Tian ZF. High accuracy numerical investigation of double-diffusive convection in a rectangular enclosure with horizontal temperature and concentration gradients. Int J Heat Mass Transf. 2014;71:405–23.

    Article  Google Scholar 

  120. Bera P, Pippal S, Sharma AK. A thermal non-equilibrium approach on double-diffusive natural convection in a square porous-medium cavity. Int J Heat Mass Transf. 2014;78:1080–94.

    Article  Google Scholar 

  121. Mondal S, Sibanda P. Unsteady double diffusive convection in an inclined rectangular lid-driven enclosure with different magnetic field angles and non-uniform boundary conditions. Int J Heat Mass Transf. 2015;90:900–10.

    Article  Google Scholar 

  122. Dastmalchi M, Sheikhzadeh GA, Arani AA. Double-diffusive natural convective in a porous square enclosure filled with nanofluid. Int J Therm Sci. 2015;95:88–98.

    Article  CAS  Google Scholar 

  123. Jena SK, Malla LK, Mahapatra SK, Chamkha AJ. Transient buoyancy-opposed double diffusive convection of micropolar fluids in a square enclosure. Int J Heat Mass Transf. 2015;81:681–94.

    Article  Google Scholar 

  124. Sheremet MA, Pop I, Ishak A. Double-diffusive mixed convection in a porous open cavity filled with a nanofluid using Buongiorno’s model. Transp Porous Media. 2015;109(1):131–45.

    Article  CAS  Google Scholar 

  125. Maatki C, Ghachem K, Kolsi L, Hussein AK, Borjini MN, Aissia HB. Inclination effects of magnetic field direction in 3D double-diffusive natural convection. Appl Math Comput. 2016;273:178–89.

    Google Scholar 

  126. Carvalho PH, de Lemos MJ. Effect of thermal conductivity ratio on laminar double-diffusive free convection in a porous cavity. J Heat Transfer. 2017;139:10.

    Article  CAS  Google Scholar 

  127. Alhashash A, Saleh H. Combined solutal and thermal buoyancy thermocapillary convection in a square open cavity. J Appl Fluid Mech. 2017;10(4):1113–24.

    Article  Google Scholar 

  128. Hussain S, Öztop H, Jamal M, Hamdeh N. Double diffusive nanofluid flow in a duct with cavity heated from below. Int J Mech Sci. 2017;131:535–45.

    Article  Google Scholar 

  129. Zhang L, Li Y-R, Zhang H. Onset of double-diffusive Rayleigh-Bénard convection of a moderate Prandtl number binary mixture in cylindrical enclosures. Int J Heat Mass Transf. 2017;107:500–9.

    Article  CAS  Google Scholar 

  130. Hussain S, Mehmood K, Sagheer M, Yamin M. Numerical simulation of double diffusive mixed convective nanofluid flow and entropy generation in a square porous enclosure. Int J Heat Mass Transf. 2018;122:1283–97.

    Article  CAS  Google Scholar 

  131. Mahapatra T, Saha BC, Pal D. Magnetohydrodynamic double-diffusive natural convection for nanofluid within a trapezoidal enclosure. Comput Appl Math. 2018;37(5):6132–51.

    Article  Google Scholar 

  132. Koufi L, Cherif Y, Younsi Z, Naji H. Double-diffusive natural convection in a mixture-filled cavity with walls’ opposite temperatures and concentrations. Heat Transf Eng. 2019;40(15):1268–85.

    Article  CAS  Google Scholar 

  133. Dubey R, Murthy P. The onset of double-diffusive convection in a Brinkman porous layer with convective thermal boundary conditions. AIP Adv. 2019;9(4): 045322.

    Article  CAS  Google Scholar 

  134. Saeed A, Karimi N, Hunt G, Torabi M, Mehdizadeh A. Double-diffusive transport and thermodynamic analysis of a magnetic microreactor with non-Newtonian biofuel flow. J Therm Anal Calorim. 2019;2019:1–25.

    Google Scholar 

  135. Parveen R, Mahapatra T. Numerical simulation of MHD double diffusive natural convection and entropy generation in a wavy enclosure filled with nanofluid with discrete heating. Heliyon. 2019;5(9): e02496.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Nath R, Krishnan M. Numerical study of double diffusive mixed convection in a backward facing step channel filled with Cu-water nanofluid. Int J Mech Sci. 2019;153:48–63.

    Article  Google Scholar 

  137. Wang H, Zhao Y, Tian L, editors. Numerical simulation of double-diffusion natural convection in rectangular square cavity with porous enclosure. IOP Conference on Series Earth Environmental Science. IOP Publishing; 2019

  138. Cherfi R. Numerical simulation of double diffusive mixed convection in a horizontal annulus with finned inner cylinder. Fluid Dyn Mater Process. 2019;15(2):153–69.

    Article  Google Scholar 

  139. Al-Farhany K, Turan A. Double-diffusive of natural convection in an inclined porous square domain generalized model. Al-Qadisiyah J Eng Sci. 2019;12(3):151–60.

    Google Scholar 

  140. Li Y, Yang M, Li J, Wang Z. Study on heat and mass transfer with heat and mass and nonlinear characteristics source in cvity. Front Heat Mass Transf. 2019;13.

  141. Khan ZH, Khan WA, Sheremet MA. Enhancement of heat and mass transfer rates through various porous cavities for triple convective-diffusive free convection. Energy. 2020;201: 117702.

    Article  CAS  Google Scholar 

  142. Moolya S, Satheesh A. Role of magnetic field and cavity inclination on double diffusive mixed convection in rectangular enclosed domain. Int Commun Heat Mass Transf. 2020;118: 104814.

    Article  Google Scholar 

  143. Hussain S, Öztop HF, Qureshi MA, Abu-Hamdeh N. Double diffusive buoyancy induced convection in stepwise open porous cavities filled nanofluid. Int Commun Heat Mass Transf. 2020;119: 104949.

    Article  CAS  Google Scholar 

  144. Qiang X, Siddique I, Sadiq K, Shah NA. Double diffusive MHD convective flows of a viscous fluid under influence of the inclined magnetic field, source/sink and chemical reaction. Alex Eng J. 2020;59(6):4171–81.

    Article  Google Scholar 

  145. Rghif Y, Zeghmati B, Bahraoui F. Modeling of a salt gradient solar pond under Moroccan climate taking into account double-diffusive convection. Mater Today Proc. 2020;30:883–8.

    Article  CAS  Google Scholar 

  146. Saleem KB, Koufi L, Alshara AK, Kolsi L. Double-diffusive natural convection in a solar distiller with external fluid stream cooling. Int J Mech Sci. 2020;181: 105728.

    Article  Google Scholar 

  147. Saleem KB, Ghachem K, Koufi L, Kolsi L. Analysis of Double-diffusive natural convection in a solar distiller embedded with PCM and cooled with external water stream. J Taiwan Inst Chem Eng. 2021;126:67–79.

    Article  CAS  Google Scholar 

  148. Maatki C, Hassen W, Kolsi L, AlShammari N, Borjini MN, Aissia H. 3-D numerical study of hydromagnetic double diffusive natural convection and entropy generation in cubic cavity. J Appl Fluid Mech. 2016;9(4):1915–25.

    Google Scholar 

  149. Borjini N, Ghachem K, Maatki C. Entropy generation of double diffusive natural convection in a three dimensional differentially heated enclosure. Int J Eng. 2014;27(2):215–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan F. Oztop.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Gangawane, K.M. & Oztop, H.F. Applications of lattice Boltzmann method for double-diffusive convection in the cavity: a review. J Therm Anal Calorim 147, 10889–10921 (2022). https://doi.org/10.1007/s10973-022-11354-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11354-z

Keywords

Navigation