Skip to main content

Advertisement

Log in

Parametric Study and Comparison of Aerodynamics Momentum-Based Models for Straight-Bladed Vertical Axis Wind Turbines

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, different momentum models for vertical axis wind turbines (VAWTs) are investigated and compared for different operating parameters. The performance over different rotor solidities and aspect ratios is studied to find the best configuration of the turbine. By comparing different models, the merit of double multiple streamtube model is established. Three different airfoils were investigated using the parameters of reference turbines from the literature. NACA0015 is found to be advantageous among NACA0012 and NACA0021. Also, the effect of different number of blades is studied and it is found that two-bladed rotor with NACA0015 airfoil provides excellent performance. By studying the turbine aspect ratio, it is found that a VAWT of 5.1 m height and 4.25 m diameter will generate a maximum power coefficient of 36.13% at TSR of 5.51 with good starting behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\( C_{\text{P}} \) :

Power coefficient

\( P \) :

Power (W)

\( Q, T \) :

Aerodynamic torque (N m)

\( N \) :

Number of blades

\( c \) :

Chord length of the blade (m)

\( R,D \) :

Radius/diameter of the wind turbine (m)

\( H \) :

Height of the blade/turbine (m)

\( \sigma \) :

Solidity \( (\sigma = Nc/R) \)

\( \lambda \) :

Tip-speed ratio (TSR), \( \lambda = \frac{\omega R}{{V_{\infty } }} \)

\( \omega \) :

Rotor angular velocity (rad/s)

\( V_{a} \) :

Upstream induced velocity (m/s)

\( V_{\infty } \) :

Free stream velocity (m/s)

\( V_{a}^{\text{d}} \) :

Downstream induced velocity (m/s)

\( W \) :

Relative velocity upstream (m/s)

\( W^{\text{d}} \) :

Relative velocity downstream (m/s)

\( V_{\text{c}} \) :

Chordal velocity component (m/s)

\( V_{\text{n}} \) :

Normal velocity component (m/s)

\( \theta \) :

Azimuth angle

\( \alpha \) :

Angle of attach

\( \alpha_{\text{d}} \) :

Downstream angle of attach

\( q \) :

Local relative dynamic pressure (N/m2)

\( \Delta \theta \) :

Azimuth angle increment correspond to one streamtube

\( N_{\theta } \) :

Number of \( \theta \) increments \( \left( {N_{\theta } = \frac{\pi }{\Delta \theta } + 1} \right) \)

\( T_{\text{B}} \) :

Torque on a complete blade (N m)

\( C_{\text{l}} \) :

Airfoil lift coefficient

\( C_{\text{d}} \) :

Airfoil drag coefficient

\( C_{\text{t}} \) :

Tangential coefficient

\( C_{\text{n}} \) :

Normal coefficient

\( \rho \) :

Density of the air (kg/m3)

\( F_{\text{D}} \) :

Streamwise drag force (N)

\( C_{\text{DD}} \) :

Rotor drag coefficient

\( C_{\text{D}} \) :

Drag coefficient

\( A \) :

Rotor/turbine swept area, (m2) (A = 2HR)

\( a,\;a^{\text{d}} \) :

Upwind and downwind induction factors

\( f_{\text{u}} , \;f_{\text{d}} \) :

Upwind and downwind functions

\( F_{\text{t}} ,\; F_{\text{n}} \) :

Normal and tangential force (N)

\( F_{\text{ta}} \) :

Average tangential force (N)

\( F_{x} \) :

Streamwise force (N)

\( \bar{F}_{x} \) :

Average streamwise force (N)

\( F_{x}^{*} \) :

Non-dimensional streamwise force

VAWT:

Vertical axis wind turbine

SB-VAWT:

Straight-bladed vertical axis wind turbine

HAWT:

Horizontal-axis wind turbine

SST:

Single streamtube

MST:

Multiple streamtube

DMST:

Double multiple streamtube

RMSE:

Root-mean-squared error

References

  1. Ackermann, T.; Söder, L.: Wind energy technology and current status: a review. Renew. Sustain. Energy Rev. 4(4), 315–374 (2000)

    Article  Google Scholar 

  2. Thresher, R.W.; Robinson, M.C.; Veers, P.S.: Wind Energy Technology: Current Status and R&D Future. National Renewable Energy Laboratory, Golden (2008)

    Google Scholar 

  3. Al-Douri, Y.; Waheeb, S.; Voon, C.: Review of the renewable energy outlook in Saudi Arabia. J. Renew. Sustain. Energy 11(1), 015906 (2019)

    Article  Google Scholar 

  4. Eltamaly, A.M.; Addoweesh, K.E.; Bawa, U.; Mohamed, M.A.: Economic modeling of hybrid renewable energy system: a case study in Saudi Arabia. Arab. J. Sci. Eng. 39(5), 3827–3839 (2014)

    Article  Google Scholar 

  5. Eltamaly, A.M.: Pairing between sites and wind turbines for Saudi Arabia Sites. Arab. J. Sci. Eng. 39(8), 6225–6233 (2014)

    Article  Google Scholar 

  6. Herbert, G.J.; Iniyan, S.; Sreevalsan, E.; Rajapandian, S.: A review of wind energy technologies. Renew. Sustain. Energy Rev. 11(6), 1117–1145 (2007)

    Article  Google Scholar 

  7. Cooper, P.: Development and analysis of vertical-axis wind turbines. In: Tong, W. (ed.) WIT Transactions on State of the Art in Science and Engineering, vol. 1, 1st edn, pp. 277–302. WIT Press, Southampton (2010)

    Google Scholar 

  8. Schaffarczyk, A.P.: Types of wind turbines. In: Schafarczyk, A.P. (ed.) Introduction to Wind Turbine Aerodynamics, pp. 7–20. Springer, Berlin (2014)

    Google Scholar 

  9. Jin, X.; Zhao, G.; Gao, K.; Ju, W.: Darrieus vertical axis wind turbine: basic research methods. Renew. Sustain. Energy Rev. 42, 212–225 (2015)

    Article  Google Scholar 

  10. Brusca, S.; Lanzafame, R.; Messina, M.: Design of a vertical-axis wind turbine: how the aspect ratio affects the turbine’s performance. Int. J. Energy Environ. Eng. 5(4), 333–340 (2014)

    Article  Google Scholar 

  11. Rezaeiha, A.; Montazeri, H.; Blocken, B.: Effect of solidity on aerodynamic performance of vertical axis wind turbines. In: XV Conference of the Italian Association for Wind Engineering (IN-VENTO 2018), 9–12 September 2018, Napoli, Italy (2018)

  12. Kanyako, F.; Janajreh, I.: Vertical axis wind turbine performance prediction models using high and low fidelity analyses. Int. J. Eng. Res. Innov. 7, 48–56 (2015)

    Google Scholar 

  13. Beri, H.; Yao, Y.; et al.: Double multiple streamtube model and numerical analysis of vertical axis wind turbine. Energy Power Eng. 3(03), 262 (2011)

    Article  Google Scholar 

  14. Zhu, H.; Li, C.; Hao, W.; Ding, Q.; Yu, W.: Investigation on aerodynamic characteristics of building augmented vertical axis wind turbine. J. Renew. Sustain. Energy 10(5), 053302 (2018)

    Article  Google Scholar 

  15. Peng, H.; Lam, H.; Liu, H.: Numerical investigation into the blade and wake aerodynamics of an H-rotor vertical axis wind turbine. J. Renew. Sustain. Energy 10(5), 053305 (2018)

    Article  Google Scholar 

  16. Saeidi, D.; Sedaghat, A.; Alamdari, P.; Alemrajabi, A.A.: Aerodynamic design and economical evaluation of site specific small vertical axis wind turbines. Appl. Energy 101, 765–775 (2013)

    Article  Google Scholar 

  17. Bouzaher, M.T.; Hadid, M.: Numerical investigation of a vertical axis tidal turbine with deforming blades. Arab. J. Sci. Eng. 42(5), 2167–2178 (2017)

    Article  Google Scholar 

  18. Wang, T.: A brief review on wind turbine aerodynamics. Theor. Appl. Mech. Lett. 2(6), 062001-1–062001-18 (2012)

    Article  Google Scholar 

  19. Paraschivoiu, I.: Wind Turbine Design: With Emphasis on Darrieus Concept. Presses inter Polytechnique, Montreal (2002)

    Google Scholar 

  20. Templin, R.: Aerodynamic Performance Theory for the NRC Vertical-Axis Wind Turbine. National Aeronautical Establishment, Ottawa (1974)

    Google Scholar 

  21. Strickland, J.H.: Darrieus Turbine: A Performance Prediction Model Using Multiple Streamtubes. Sandia Labs., Albuquerque (1975)

    Google Scholar 

  22. Sanyer, W.: The development of a wind turbine for residential use. Master thesis, North Carolina State University, Raleigh, NC (2011)

  23. Batista, N.; Melício, R.; Mendes, V.M.; Figueiredo, J.; Reis, A.: Darrieus wind turbine performance prediction: computational modeling. In: Doctoral Conference on Computing, Electrical and Industrial Systems, pp. 382–391 (2013)

    Google Scholar 

  24. Paraschivoiu, I.: Double-multiple streamtube model for Darrieus in turbines. In: Wind Turbine Dynamics, Second DOE/NASA Wind Turbines Dynamics Workshop, Cleveland, OH (1981)

  25. Yang, Y.; Guo, Z.; Zhang, Y.; Jinyama, H.; Li, Q.: Numerical investigation of the tip vortex of a straight-bladed vertical axis wind turbine with double-blades. Energies 10(11), 1721-1–1721-18 (2017)

    Google Scholar 

  26. Ferrari, G.: Development of an aeroelastic simulation for the analysis of vertical-axis wind turbines. ResearchSpace@ Auckland (2012)

  27. Zhao, Z.; et al.: Study on variable pitch strategy in H-type wind turbine considering effect of small angle of attack. J. Renew. Sustain. Energy 9(5), 053302 (2017)

    Article  Google Scholar 

  28. Sheldahl, R.E.: Aerodynamic characteristics of seven airfoil sections through 180 degrees angle of attack for use in aerodynamic analysis of vertical axis wind turbines. SAND80-2114 (1981)

  29. Sheldahl, R.E.; Klimas, P.C.; Feltz, L.V.: Aerodynamic performance of a 5-metre-diameter Darrieus turbine with extruded aluminum NACA-0015 blades. NASA STI/Recon technical report N, vol. 80 (1980)

  30. Mohammed, A.A.; Ouakad, H.M.; Sahin, A.Z.; Bahaidarah, H.M.: Vertical axis wind turbine aerodynamics: summary and review of momentum models. J. Energy Res. Technol. 141(5), 050801 (2019)

    Article  Google Scholar 

  31. Goude, A.: Fluid mechanics of vertical axis turbines simulations and model development. Acta Universitatis Upsaliensis, Uppsala (2012)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of their funding body represented by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum and Minerals (KFUPM) through the National Science, Technology and Innovation Plan (NSTIP) of the King Abdulaziz City for Science and Technology (KACST): Grant Number 14-ENE2337-04. Moreover, the first author extends his thanks to KFUPM Endowment through Mr. Luhaidan Scholarship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassen M. Ouakad.

Appendix A

Appendix A

The mathematical relations for momentum models are presented in this section, more details are available in [30].

1.1 A.1 General Relations

$$ V_{\text{c}} = R\omega + V_{a} \cos \theta $$
(A.1)
$$ V_{\text{n}} = V_{a} \sin \theta $$
(A.2)
$$ W = \sqrt {V_{\text{n}}^{2} + V_{\text{c}}^{2} = } \sqrt {\left( {V_{a} \sin \theta } \right)^{2} + \left( {R\omega + V_{a} \cos \theta } \right)^{2} } $$
(A.3)

Using free stream velocity, the relative velocity can be expressed in non-dimensional form (\( a \) is the axial induction factor and \( \alpha \) is the angle of attach:

$$ \frac{W}{{V_{\infty } }} = \sqrt {\left( {(1 - a)\sin \theta } \right)^{2} + \left( {\lambda + (1 - a)\cos \theta } \right)^{2} } $$
(A.4)
$$ \alpha = \tan^{ - 1} \left( {\frac{{V_{\text{n}} }}{{V_{\text{c}} }}} \right) = \tan^{ - 1} \left[ {\frac{{V_{a} \sin \theta }}{{R\omega + V_{a} \cos \theta }}} \right] $$
(A.5)

Recall that \( V_{a} = V_{\infty } \left( {1 - a} \right) \) and the tip-speed ratio (TSR) \( \lambda = {{R\omega } \mathord{\left/ {\vphantom {{R\omega } {V_{\infty } }}} \right. \kern-0pt} {V_{\infty } }} \) previous equation can be written as:

$$ \alpha = \tan^{ - 1} \left[ {\frac{(1 - a)\sin \theta }{\lambda + (1 - a)\cos \theta }} \right] $$
(A.6)
$$ C_{\text{t}} = C_{\text{l}} \sin \alpha - C_{\text{d}} \cos \alpha $$
(A.7)
$$ C_{\text{n}} = C_{\text{l}} \cos \alpha + C_{\text{d}} \sin \alpha $$
(A.8)

where \( C_{\text{l}} \) and \( C_{\text{d}} \) are the airfoil lift and drag coefficients, respectively, and \( C_{\text{n}} \) is the normal coefficient.

$$ F_{\text{t}} = \frac{1}{2}C_{\text{t}} \rho cHW^{2} \quad {\text{and}}\quad F_{\text{n}} = \frac{1}{2}C_{\text{n}} \rho cHW^{2} $$
(A.9)

\( F_{\text{t}} \) and \( F_{\text{n}} \) are the tangential and normal forces, respectively. Different models were developed to calculate such forces.

$$ F_{\text{ta}} = \frac{1}{2\pi }\int\limits_{0}^{2\pi } {F_{\text{t}} (\theta ){\text{d}}\theta } $$
(A.10)

The total torque (Q) for the number of blades (N) is found as

$$ Q = NF_{\text{ta}} R $$
(A.11)

The total power (P) can be obtained as

$$ P = Q \times \omega $$
(A.12)

1.2 A.2 Single Streamtube Model

Owing to the rate of change of momentum, the streamwise drag force (\( F_{\text{D}} \)) is given by [19]:

$$ F_{\text{D}} = 2\rho AV_{a} (V_{\infty } - V_{a} ) $$
(A.13)

The rotor drag coefficient (\( C_{\text{DD}} \)) is defined as

$$ C_{\text{DD}} = \frac{{F_{\text{D}} }}{{\frac{1}{2}\rho AV_{a}^{2} }} = \frac{{4(V_{\infty } - V_{a} )}}{{V_{a} }} $$
(A.14)
$$ \frac{{V_{a} }}{{V_{\infty } }} = \left( {\frac{1}{{1 + {{C_{\text{DD}} } \mathord{\left/ {\vphantom {{C_{\text{DD}} } 4}} \right. \kern-0pt} 4}}}} \right) $$
(A.15)
$$ C_{\text{D}} = \frac{{F_{\text{D}} }}{{\frac{1}{2}\rho AV_{\infty }^{2} }} = C_{\text{DD}} \left( {\frac{{V_{\text{D}} }}{{V_{\infty } }}} \right) = \frac{{C_{\text{DD}} }}{{\left( {1 + \frac{1}{4}C_{\text{DD}} } \right)^{2} }} $$
(A.16)

The local relative dynamic pressure is given by:

$$ \frac{q}{{\frac{1}{2}\rho AV_{a}^{2} }} = \left( {\frac{R\omega }{{V_{a} }} + \cos \theta } \right)^{2} + \sin^{2} \theta = \left( {\frac{W}{{V_{a} }}} \right)^{2} $$
(A.17)

The total drag of a rotor having N blades read as:

$$ F_{\text{D}} = \frac{NcH}{2\pi }\int\limits_{0}^{2\pi } {q\left( {C_{\text{n}} \sin \theta - C_{\text{t}} \cos \theta } \right){\text{d}}\theta } $$
(A.18)

Thus, considering a straight-bladed rotor of height H and radius R, the area A = 2HR

$$ C_{\text{D}} = \frac{Nc}{R}\frac{1}{{2\pi \rho V_{a}^{2} }}\int\limits_{0}^{2\pi } {q\left( {C_{\text{n}} \sin \theta - C_{\text{t}} \cos \theta } \right){\text{d}}\theta } $$
(A.19)

The tip-speed ratio, (TSR) is calculated as:

$$ \lambda = \frac{R\omega }{{V_{\infty } }} = \frac{R\omega }{{V_{a} }}\left( {\frac{1}{{1 + \frac{1}{4}C_{\text{DD}} }}} \right) $$
(A.20)

The total torque of the rotor is given by:

$$ T = \frac{NcRH}{2\pi }\int\limits_{0}^{2\pi } {qC_{\text{t}} {\text{d}}\theta } $$
(A.21)

The power is given by:

$$ P = \omega \times T = \frac{NcRH\omega }{2\pi }\int\limits_{0}^{2\pi } {qC_{\text{t}} {\text{d}}\theta } $$
(A.22)

The maximum possible power, according to the Betz limit, is given by Paraschivoiu [19] and Mohammed et al. [30]:

$$ P_{\hbox{max} } = \frac{32}{27}\frac{1}{2}\rho V_{\infty }^{3} RH $$
(A.23)

The power coefficient is thus:

$$ C_{\text{P}} = \frac{P}{{P_{\hbox{max} } }} = \frac{27}{32}\frac{1}{2\pi }\frac{Nc}{R}\frac{R\omega }{{V_{a} }}\left( {\frac{{V_{a} }}{{V_{\infty } }}} \right)^{3} \int\limits_{0}^{2\pi } {\left( {\frac{q}{{\frac{1}{2}\rho V_{a}^{2} }}} \right)} C_{\text{t}} {\text{d}}\theta $$
(A.24)

1.3 A.3 Multiple Streamtube Model

The average streamwise force \( \overline{{F_{x} }} \) applied by blade elements while passing the streamtube is found from [19]:

$$ \overline{{F_{x} }} = 2\rho AV_{a} \left( {V_{\infty } - V_{a} } \right) = NF_{x} \frac{\Delta \theta }{\pi } $$
(A.25)
$$ \frac{{NF_{x} }}{{2\pi \rho r\Delta h\sin \theta V_{\infty }^{2} }} = \frac{{V_{a} }}{{V_{\infty } }}\left( {1 - \frac{{V_{a} }}{{V_{\infty } }}} \right) = F_{x}^{*} $$
(A.26)
$$ F_{x} = - \left( {F_{\text{N}} \sin \theta + F_{\text{T}} \cos \theta } \right) $$
(A.27)
$$ F_{x}^{*} = \frac{{NF_{x} }}{{2\pi \rho r\Delta h\sin \theta V_{\infty }^{2} }} = \frac{NC}{4\pi r}\left( {\frac{W}{{V_{\infty } }}} \right)^{2} \left( {C_{\text{n}} - C_{\text{t}} \frac{\cos \theta }{\sin \theta }} \right) $$
(A.28)
$$ a = 1 - \frac{{V_{a} }}{{V_{\infty } }} $$
(A.29)
$$ a = F_{x}^{*} + a^{2} $$
(A.30)

This is a fundamental relation to solve the streamtube momentum equation iteratively.

The torque produced by a single blade is given by:

$$ T_{\text{B}} = \frac{1}{2}\rho cHW^{2} C_{\text{t}} R $$
(A.31)

The average total torque produced by the rotor is written as:

$$ T = \frac{N}{{N_{\theta } }}\sum\limits_{1}^{{N_{\theta } }} {T_{\text{B}} } $$
(A.32)

where \( N_{\theta } = \frac{\pi }{\Delta \theta } + 1 \) and \( \Delta \theta \) is the size of streamtube.

The power coefficient is given as follows:

$$ C_{\text{P}} = \frac{T\omega }{{\tfrac{1}{2}\rho AV_{\infty }^{2} }} = \frac{{\sum\limits_{1}^{{N_{\theta } }} {\tfrac{NC}{2R}\lambda \left( {\tfrac{W}{{V_{\infty } }}} \right)^{2} C_{\text{t}} } }}{{N_{\theta } }} $$
(A.33)

1.4 A.4 Double Multiple Streamtube Model

As mentioned before, the calculation are performed twice for upwind half (\( {\pi \mathord{\left/ {\vphantom {\pi 2}} \right. \kern-0pt} 2} \le \theta \le {{3\pi } \mathord{\left/ {\vphantom {{3\pi } 2}} \right. \kern-0pt} 2} \)) and for downwind half (\( {{3\pi } \mathord{\left/ {\vphantom {{3\pi } 2}} \right. \kern-0pt} 2} \le \theta \le {\pi \mathord{\left/ {\vphantom {\pi 2}} \right. \kern-0pt} 2} \)) cycles. Equations (A.3) and (A.6) are used to find the relative velocity and angle of attach, respectively. Equating the forces given by momentum equations to those given by blade element theory [19, 31]:

$$ f_{\text{u}} (1 - a) = a $$
(A.34)

where the upwind function \( f_{\text{u}} \) is given by:

$$ f_{\text{u}} = \frac{Nc}{8\pi R}\int\limits_{\pi /2}^{3\pi /2} {\left( {C_{\text{n}} \frac{\cos \theta }{{\left| {\cos \theta } \right|}} - C_{\text{t}} \frac{\sin \theta }{{\left| {\sin \theta } \right|}}} \right)} \left( {\frac{W}{{V_{a} }}} \right)^{2} {\text{d}}\theta $$
(A.35)

Thus, the power coefficient for the upwind half of the turbine is given by:

$$ C_{{{\text{P}}_{u} }} = \frac{NcH}{2\pi A}\int\limits_{\pi /2}^{3\pi /2} {C_{\text{t}} } \left( {\frac{W}{{V_{\infty } }}} \right)^{2} {\text{d}}\theta $$
(A.36)

The downwind part of the rotor is treated similarly and finally the power coefficients of the two half cycles is summed to find the overall power coefficient of the rotor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, A.A., Ouakad, H.M., Sahin, A.Z. et al. Parametric Study and Comparison of Aerodynamics Momentum-Based Models for Straight-Bladed Vertical Axis Wind Turbines. Arab J Sci Eng 45, 729–741 (2020). https://doi.org/10.1007/s13369-019-04133-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04133-w

Keywords

Navigation