Skip to main content
Log in

A Study to Establish Equivalence of Thermal and Mechanical Loads

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A proper combination of thermal and mechanical loads is generally maintained to provide the necessary complicated shape and profile to the sheet metal in shipbuilding, aerospace, and others, for which an experienced operator should have the knowledge of the equivalence of these two loads. A study was conducted to establish the equivalence of thermal and mechanical loads in terms of their capability to produce the same deflection. The maximum deflection of a simply supported beam-like structure with small thickness subjected to only thermal load had been determined using finite element analysis. Moreover, the temperature profile followed during the heating and cooling was plotted. A test rig was fabricated for determination of the same and necessary comparison to establish this equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\( B \) :

Breadth of beam

\( C_{p} \) :

Specific heat

\( E \) :

Young’s modulus of elasticity

\( h \) :

Thickness of the plate

\( h_{f} \) :

Coefficient of convective heat transfer

\( H \) :

Thickness of beam

I :

Current

\( I' \) :

Moment of inertia

\( k \) :

Thermal conductivity

\( K^{ - 1} \) :

Expansion coefficient

\( L \) :

Length of the beam

P :

Load

\( q_{\text{c}} \) :

Convection heat loss

\( q_{\text{r}} \) :

Radiation heat loss

\( Q \) :

Input power

\( Q_{\text{s}} \) :

Surface heat flux

\( Q_{\text{v}} \) :

Volume heat flux

\( r_{\text{b}} \) :

Beam radius

t :

Time

T :

Temperature

\( T_{0} \) :

Ambient temperature

V :

Voltage

\( \gamma_{\text{s}} \) :

Fraction of input power falling on the surface

\( \gamma_{\text{v}} \) :

Fraction of input power falling on the volume

δ :

Deflection

η :

Efficiency

ρ :

Density

σ :

Stefan–Boltzmann constant

ε :

Emissivity

References

  1. Kermanidis, T.; Kyrsanidi, A.; Pantelakis, S.G.: Numerical simulation of the laser forming process in metallic plates. Trans. Eng. Sci. 17, 307–316 (1997)

    Google Scholar 

  2. Yau, C.L.; Chan, K.C.; Lee, W.B.: Laser bending of leadframe materials. J. Mater. Process. Technol. 82, 117–121 (1998)

    Article  Google Scholar 

  3. Cheng, P.J.; Lin, S.C.: Analytical model to estimate angle formed by laser. J. Mater. Process. Technol. 108, 314–319 (2001)

    Article  Google Scholar 

  4. Zhang, L.; Michaleris, P.: Investigation of Lagrangian and Eulerian finite element methods for modeling the laser forming process. Finite Elem. Anal. Des. 40, 383–405 (2004)

    Article  Google Scholar 

  5. Shen, H.Ã.; Yao, Z.; Shi, Y.; et al.: An analytical formula for estimating the bending angle by laser forming. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 220, 243–247 (2006)

    Article  Google Scholar 

  6. Shen, H.; Shi, Y.; Yao, Z.; et al.: An analytical model for estimating deformation in laser forming. Comput. Mater. Sci. 37, 593–598 (2006)

    Article  Google Scholar 

  7. Patade, H.K.; Chakrabarti, M.A.: Thermal stress analysis of beam subjected to fire. Int. J. Eng. Res. Appl. 3, 420–424 (2013)

    Google Scholar 

  8. Maji, K.; Pratihar, D.K.; Nath, A.K.: Experimental investigations and statistical analysis of pulsed laser bending of AISI 304 stainless steel sheet. Opt. Laser Technol. 49, 18–27 (2013)

    Article  Google Scholar 

  9. Maji, K.; Pratihar, D.K.; Nath, A.K.: Laser forming of a dome shaped surface: experimental investigations, statistical analysis and neural network modeling. Opt. Lasers Eng. 53, 31–42 (2014)

    Article  Google Scholar 

  10. Eideh, A.; Dixit, U.S.; Echempati, R.: A simple analytical model of laser bending. In: 5th International and 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR). IIT Guwahati, Assam, India, pp. 22-1–22–7

  11. Das, R.; Mishra, S.C.; Ajith, M.; Uppaluri, R.: An inverse analysis of a transient 2-D conduction-radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm. J. Quant. Spectrosc. Radiat. Transf. 109, 2060–2077 (2008)

    Article  Google Scholar 

  12. Mishra, S.C.; Kim, M.Y.; Das, R.; et al.: Lattice Boltzmann method applied to the analysis of transient conduction-radiation problems in a cylindrical medium. Numer. Heat Transf. Part A Appl. 56, 42–59 (2009)

    Article  Google Scholar 

  13. Chopade, R.P.; Mohan, V.; Mayank, R.; et al.: Simultaneous retrieval of parameters in a transient conduction-radiation problem using a differential evolution algorithm. Numer. Heat Transf. Part A Appl. 63, 373–395 (2013)

    Article  Google Scholar 

  14. Chang, W.S.; Na, S.J.: Prediction of laser-spot-weld shape by numerical analysis and neural network. Metall. Mater. Trans. B 32, 723–731 (2001)

    Article  Google Scholar 

  15. Podder, D.; Kenno, S.; Das, S.; et al.: Numerical investigation on interruption in the welding process used in shipbuilding. J. Sh. Prod. Des. 31, 220–229 (2015)

    Article  Google Scholar 

  16. Das, D.; Pratihar, D.K.; Roy, G.G.: Electron beam melting of steel plates: temperature measurement using thermocouples and prediction through finite element analysis. In: CAD/CAM, Robotics and Factories of the Future. Springer, New Delhi, 2016, pp. 579–588

    Google Scholar 

  17. Luo, Y.; You, G.; Ye, H.; et al.: Simulation on welding thermal effect of AZ61 magnesium alloy based on three-dimensional modeling of vacuum electron beam welding heat source. Vacuum 84, 890–895 (2010)

    Article  Google Scholar 

  18. Ferro, P.; Zambon, A.; Bonollo, F.: Investigation of electron-beam welding in wrought Inconel 706 - experimental and numerical analysis. Mater. Sci. Eng., A 392, 94–105 (2005)

    Article  Google Scholar 

  19. Ranjbarnodeh, E.; Serajzadeh, S.; Kokabi, A.H.; et al.: Effect of welding parameters on residual stresses in dissimilar joint of stainless steel to carbon steel. J. Mater. Sci. 46, 3225–3232 (2011)

    Article  Google Scholar 

  20. Vemanaboina, H.; Akella, S.; Buddu, R.K.: Welding process simulation model for temperature and residual stress analysis. Procedia Mater. Sci. 6, 1539–1546 (2014)

    Article  Google Scholar 

  21. Mohanty, S.; Laldas, C.K.; Roy, G.G.: A new model for keyhole mode laser welding using FLUENT. Trans. Indian Inst. Met. 65, 459–466 (2012)

    Article  Google Scholar 

  22. Shanmugam, N.S.; Buvanashekaran, G.; Sankaranarayanasamy, K.: Finite element simulation of Nd : YAG laser lap welding of AISI 304 stainless steel sheets. In: Recent Advances in Mechanical Engineering and Automatic Control, pp. 174–179 (2009)

  23. Kazemi, K.; Goldak, J.A.: Numerical simulation of laser full penetration welding. Comput. Mater. Sci. 44, 841–849 (2009)

    Article  Google Scholar 

  24. Das, D.; Pratihar, D.K.; Roy, G.G.: Cooling rate predictions and its correlation with grain characteristics during electron beam welding of stainless steel. Int. J. Adv. Manuf. Technol. https://doi.org/10.1007/s00170-018-2095-6

    Article  Google Scholar 

  25. Chakraborty, S.S.; Maji, K.; Racherla, V.; et al.: Investigation on laser forming of stainless steel sheets under coupling mechanism. Opt. Laser Technol. 71, 29–44 (2015)

    Article  Google Scholar 

  26. Rai, R.; Roy, G.G.; Debroy, T.: A computationally efficient model of convective heat transfer and solidification characteristics during keyhole mode laser welding. J. Appl. Phys. 101, 54909 (2007)

    Article  Google Scholar 

  27. Bag, S.; De, A.; DebRoy, T.: A genetic algorithm-assisted inverse convective heat transfer model for tailoring weld geometry. Mater. Manuf. Process. 24, 384–397 (2009)

    Article  Google Scholar 

  28. He, X.; Fuerschbach, P.W.; DebRoy, T.: Heat transfer and fluid flow during laser spot welding of 304 stainless steel. J. Phys. D Appl. Phys. 36, 1388–1398 (2003)

    Article  Google Scholar 

  29. Das, D.; Pratihar, D.K.; Roy, G.G.; et al.: Phenomenological model-based study on electron beam welding process, and input-output modeling using neural networks trained by back-propagation algorithm, genetic algorithms, particle swarm optimization algorithm and bat algorithm. Appl. Intell. https://doi.org/10.1007/s10489-017-1101-2

    Article  Google Scholar 

  30. Gery, D.; Long, H.; Maropoulos, P.: Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding. J. Mater. Process. Technol. 167, 393–401 (2005)

    Article  Google Scholar 

  31. Deng, D.; Murakawa, H.: Finite element analysis of temperature field, microstructure and residual stress in multi-pass butt-welded 2. 25Cr–1Mo steel pipes. Comput. Mater. Sci. 43, 681–695 (2008)

    Article  Google Scholar 

  32. Zhang, Y.; Yi, Y.; Huang, S.; et al.: Influence of temperature-dependent properties of aluminum alloy on evolution of plastic strain and residual stress during quenching process. Metals (Basel) 7, 228 (2017)

    Article  Google Scholar 

  33. Bajpei, T.; Chelladurai, H.; Ansari, M.Z.: Numerical investigation of transient temperature and residual stresses in thin dissimilar aluminium alloy plates. Procedia Manuf. 5, 558–567 (2016)

    Article  Google Scholar 

  34. Awbery, J.H.; Griffiths, E.: The latent heat of fusion of some metals. Proc. Phys. Soc. Lond. 38, 378–398 (1925)

    Article  Google Scholar 

  35. Bajpei, T.; Chelladurai, H.; Ansari, M.Z.: Mitigation of residual stresses and distortions in thin aluminium alloy GMAW plates using different heat sink models. J. Manuf. Process. 22, 199–210 (2016)

    Article  Google Scholar 

  36. Davoudi, K.: Scripta materialia temperature dependence of the yield strength of aluminum thin films: multiscale modeling approach. Scr. Mater. 131, 63–66 (2017)

    Article  Google Scholar 

  37. TypeK-conversion. http://www.intech.co.nz/products/temperature/typek/TypeK-Conversion.pdf. Accessed 8 April 2018

  38. Rourke, L.O.: The mathematics of simple beam deflection. www.raeng.ork.uk/publications/other/15-beam-deflection. Accessed 16 April 2018

Download references

Acknowledgement

The help and cooperation of the staff members of the Workshop and Mr. Abhijit Basak of Electrical Engineering Laboratory of NIT Rourkela, India, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip Kumar Pratihar.

Appendix

Appendix

1.1 Numerical Analysis Conducted to Establish the Equivalence of Thermal and Mechanical Loads

Load–deflection equation for the simply supported beam with concentrated point load acting at its mid-span is as follows [38]:

$$ \delta = \frac{{PL^{3} }}{{48EI^{{\prime }} }}, $$

where \( \delta \) represents the maximum deflection (m), \( P \) denotes the load (N), \( L \) indicates the length of the beam (m), \( E \) represents Young’s modulus of elasticity of the beam material (N/m2), and \( I^{'} \) denotes the area moment of inertia (m4), which is calculated as \( I^{{\prime }} = \frac{1}{12}BH^{3} \), where \( B \) represents breadth of the beam (m) and \( H \) denotes thickness of the beam (m).

1.2 Test Material: Steel

$$ \begin{array}{*{20}l} {\delta = 0. 0 1 4\;{\text{m}}} \hfill \\ {L = 0. 2 2\;{\text{m}}} \hfill \\ {B = 0. 0 0 5\;{\text{m}}} \hfill \\ {H = 0. 0 0 2\;{\text{m}}} \hfill \\ {E = 190, 0 0 0 , 0 0 0 , 0 0 0\;{\text{Pa}}} \hfill \\ {I^{'} = \frac{1}{12}0.005 \times (0.002)^{3} = 3.33 \times 10^{ - 12} \;{\text{m}}^{4} } \hfill \\ {P = \frac{{48\delta EI^{'} }}{{L^{3} }} = \frac{{48 \times 0. 0 1 4\times 190, 0 0 0 , 0 0 0 , 0 0 0\times 3.33 \times 10^{ - 12} }}{{ ( 0. 2 2)^{3} }} = 39.937\;{\text{N}}} \hfill \\ \end{array} $$
  • Maximum temperature = 1290 °C

  • Mechanical equivalent load = 39.937 N

  • Total heat input = 1.6 × 1200 kJ, as 1600 W heat source was used for 1200 s.

Therefore, 1.0 N of mechanical load corresponds to 48.07 kJ of thermal load to produce the same amount of deflection in steel specimen.

1.3 Test Material: Aluminum

$$ \begin{array}{*{20}l} {\delta = 0.009\;{\text{m}}} \hfill \\ {L = 0.22\;{\text{m}}} \hfill \\ {B = 0.005\;{\text{m}}} \hfill \\ {H = 0.002\;{\text{m}}} \hfill \\ {E = 81,5 0 0 , 0 0 0 , 0 0 0\;{\text{Pa}}} \hfill \\ {I^{'} = \frac{1}{12}0.005 \times (0.002)^{3} = 3.33 \times 10^{ - 12} \;{\text{m}}^{4} } \hfill \\ {P = \frac{{48\delta EI^{'} }}{{L^{3} }} = \frac{{48 \times 0.009 \times 815 0 0 0 0 0 0 0 0\times 3.33 \times 10^{ - 12} }}{{(0.22)^{3} }} = 11.01\;{\text{N}}} \hfill \\ \end{array} $$
  • Maximum temperature = 610 °C

  • Mechanical equivalent load = 11.0 N

  • Total heat input = 0.9 × 1620 kJ, as 900 W heat source was utilized for 1620 s.

Therefore, 1.0 N of the mechanical load was found to be equivalent to 132.42 kJ of thermal load in order to produce the same amount of deflection in the aluminum specimen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratihar, B., Das, D. & Pratihar, D.K. A Study to Establish Equivalence of Thermal and Mechanical Loads. Arab J Sci Eng 45, 631–639 (2020). https://doi.org/10.1007/s13369-019-04116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04116-x

Keywords

Navigation