Skip to main content
Log in

Thermal Performance Evaluation of a Channel Installed with Inclined-Baffle Turbulators

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study shed light on how heat transfer in a rectangular channel can be significantly enhanced by integrating it with inclined baffles. Experiments were performed to investigate the effect of the inclined baffles at different attack angles (θ) of 0° up to 165° in 15° incremental steps. The pitch length (between the consecutive baffles) to baffle height ratio (P/e) and the baffle height to channel height ratio (e/H) remained constant at 10 and 0.15, respectively. Experiments on a channel without baffles and one with typical transverse baffles (θ = 90°) were also conducted for comparison. Temperatures measured by the thermochromic liquid crystal image processing technique were employed for plotting the temperature contours on the heated surface. The Reynolds number associated with turbulent flow varied from 9000 to 24,000 under a constant wall heat flux scenario. The heat transfer and pressure drop were characterized by the Nusselt number (Nu) and friction factor (f), respectively. The results showed a promising ability of the inclined baffles to improve the heat transfer rate in the channel, however, this came at the price of an increased pressure drop in the system. The impact of the attack angle on heat transfer and thermal efficiency showed that a 60° attack angle was superior to other attack angles. The results were comparable to those for a 120° attack angle. Additionally, this attack angle enabled the system to accomplish a zenith thermal enhancement factor (η) of 1.11 at a Reynolds number of 9000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Total height of clearance (m)

A :

Area (m2)

c :

Detached clearance (m)

c/a :

Detached-clearance ratio

C :

Specific heat (J kg−1 K−1)

D :

Diameter (m)

e :

Baffle height (m)

e/H :

Baffle height to channel height ratio

f :

Friction factor

h :

Convective heat transfer coefficient (W m−2 K−1)

H :

Channel height (m)

I :

Current (A)

k :

Thermal conductivity (W m−1 K−1)

l :

Baffle width (m)

L :

Channel length (m)

\(\dot{m}\) :

Mass flow rate (kg s−1)

Nu :

Nusselt number

P :

Pitch length (m)

P/e :

Pitch length to baffle height ratio

P/H :

Baffle pitch spacing ratio

ΔP :

Pressure drop (Pa)

Pr :

Prandtl number

q :

Heat flux (W m−2)

Q :

Heat transfer (W)

Re :

Reynolds number

s/w :

Free-spacing ratio

t :

Baffle thickness (m)

T :

Temperature (°C)

U :

Average velocity (m s−1)

V :

Volumetric flow rate (m3 s−1)

V :

Velocity (m s−1)

V :

Voltage (V)

w :

Wetted parameter (m)

W :

Channel width (m)

x :

Local distance in the test section (m)

y/w :

Twist ratio

ρ :

Fluid density (kg m−3)

μ :

Fluid dynamic viscosity (kg s−1 m−1)

ν :

Kinematic viscosity (m2 s−1)

η :

Thermal enhancement factor

θ :

Attack angle (°)

abs:

Absorbed heat

act:

Actual heat

b:

Bulk

c:

Cross-section

e:

Electrical

h:

Hydraulic

i:

Inlet

l:

Loss

o:

Outlet

w:

Wall

x:

Local distance of x-axis

0:

Bare channel

AR:

Aspect ratio

PLA:

Polylatic acid

RTD:

Resistance temperature detector

TLC:

Thermochromic liquid crystal

References

  1. Boonloi, A.; Jedsadaratanachai, W.: Turbulent forced convection in a heat exchanger square channel with wavy-ribs vortex generator. Chin. J. Chem. Eng. 23, 1256–1265 (2015)

    Article  Google Scholar 

  2. Jain, P.K.; Lanjewar, A.: Overview of V-RIB geometries in solar air heater and performance evaluation of a new V-RIB geometry. Renew. Energy 133, 77–90 (2019)

    Article  Google Scholar 

  3. Yang, W.; Xue, S.; He, Y.; Li, W.: Experimental study on the heat transfer characteristics of high blockage ribs channel. Exp. Therm. Fluid Sci. 83, 248–259 (2017)

    Article  Google Scholar 

  4. Sivakumar, K.; Natarajan, E.; Kulasekharan, N.: Influence of rib height on heat transfer augmentation: application to aircraft turbines. Int. J. Turbo Jet Engines 31, 87–95 (2014)

    Article  Google Scholar 

  5. Seghir-Ouali, S.; Saury, D.; Harmand, S.; Phillipart, O.; Laloy, D.: Convective heat transfer inside a rotating cylinder with an axial air flow. Int. J. Therm. Sci. 45, 1166–1178 (2006)

    Article  Google Scholar 

  6. Veerapandi, R.; Karthikeyanb, G.; Jinuc, G.R.; Kannaiah, R.: Experimental study and analysis of flow induced vibration in a pipeline. Int. J. Eng. Res. Technol. 3, 1996–1999 (2014)

    Google Scholar 

  7. Attia, H.A.: Unsteady MHD couette flow with heat transfer in the presence of uniform suction and injection. Mech. Mech. Eng. 12, 165–176 (2008)

    Google Scholar 

  8. Gorla, R.S.R.; Gatica, J.E.; Ghorashi, B.; In-Eure, P.; Byrd, L.W.: Heat transfer in a thin liquid film in the presence of electric field for non-isothermal interfacial condition. Int. J. Fluid Mech. Res. 29, 146–157 (2002)

    Google Scholar 

  9. Kim, H.Y.; Kang, B.H.: Effects of hydrophilic surface treatment on evaporation heat transfer at the outside wall of horizontal tubes. Appl. Therm. Eng. 23, 449–458 (2003)

    Article  Google Scholar 

  10. Pawar, C.B.; Aharwal, K.R.; Chaube, A.: Heat transfer and fluid flow characteristics of rib-groove roughened solar air heater ducts. Indian J. Sci. Technol. 2, 50–54 (2009)

    Google Scholar 

  11. Hasan, A.; Siren, K.: Performance investigation of plain and finned tube evaporatively cooled heat exchangers. Appl. Therm. Eng. 23(3), 325–340 (2003)

    Article  Google Scholar 

  12. Eiamsa-ard, S.; Promvonge, P.: Thermal characteristics of turbulent rib-grooved channel flows. Int. Commun. Heat Mass Transf. 36, 705–711 (2009)

    Article  Google Scholar 

  13. Kanna, P.R.; Sivasubramanian, M.; Prabu, P.M.; Uthayakumar, M.: Numerical simulation of steady flow and forced convection heat transfer from two square cylinders placed in a channel. Arab. J. Sci. Eng. 42, 1795–1815 (2017)

    Article  Google Scholar 

  14. Eiamsa-ard, S.; Promvonge, P.: Enhancement of heat transfer in a circular wavy-surfaced tube with a helical-tape insert. Int. Energy J. 8, 29–36 (2007)

    MATH  Google Scholar 

  15. Eiamsa-ard, S.; Kiatkittipong, K.: Heat transfer enhancement by multiple twisted tape inserts and TiO2/water nanofluid. Appl. Therm. Eng. 70, 896–924 (2014)

    Article  Google Scholar 

  16. Patil, S.D.; Patil, A.M.; Kamble, G.S.: Analysis of twisted tape with straight winglets to improve the thermo-hydraulic performance of tube in tube heat exchanger. Int. J. Adv. Eng. Res. Stud. 1, 99–103 (2012)

    Google Scholar 

  17. Alamgholilou, A.; Esmaeilzadeh, E.: Experimental investigation on hydrodynamics and heat transfer of fluid flow into channel for cooling of rectangular ribs by passive and EHD active enhancement methods. Exp. Therm. Fluid Sci. 38, 61–73 (2012)

    Article  Google Scholar 

  18. Changcharoen, W.; Eiamsa-ard, S.: Numerical investigation of turbulent heat transfer in channels with detached rib-arrays. Heat Transf. Asian Res. 40, 431–447 (2011)

    Article  Google Scholar 

  19. Promvonge, P.: Heat transfer and pressure drop in a channel with multiple 60° V-baffles. Int. Commun. Heat Mass Transf. 37, 835–840 (2010)

    Article  Google Scholar 

  20. Lee, D.H.; Rhee, D.H.; Kim, K.M.; Cho, H.H.; Moon, H.K.: Detailed measurement of heat/mass transfer with continuous and multiple V-shaped ribs in rectangular channel. Energy 34, 1770–1778 (2009)

    Article  Google Scholar 

  21. Eiamsa-ard, S.: Study on thermal and fluid flow characteristics in turbulent channel flows with multiple twisted tape vortex generators. Int. Commun. Heat Mass Transf. 31, 644–651 (2010)

    Article  Google Scholar 

  22. Prasad, B.N.; Saini, J.S.: Effect of artificial roughness on heat transfer and friction in a solar air heater. Sol. Energy 41, 555–560 (1988)

    Article  Google Scholar 

  23. Karwa, R.: Experimental studies of augmented heat transfer and friction in asymmetrically heated rectangular ducts with ribs on the heated wall in transverse, inclined, V-continuous, V-discrete pattern. Int. Commun. Heat Mass Transf. 30, 241–250 (2003)

    Article  Google Scholar 

  24. Aharwal, K.R.; Gandhi, B.K.; Saini, J.S.: Experimental investigation on heat transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater. Renew. Energy 33, 585–596 (2008)

    Article  Google Scholar 

  25. Momin, A.M.E.; Saini, J.S.; Solanki, S.C.: Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate. Int. J. Heat Mass Transf. 45, 3383–3396 (2002)

    Article  Google Scholar 

  26. Pandey, N.K.; Bajpai, V.K.: Varun: heat transfer and friction factor study of a solar air heater having multiple arcs with gap-shaped roughness element on absorber plate. Arab. J. Sci. Eng. 41, 4517–4530 (2016)

    Article  Google Scholar 

  27. Khan, J.A.; Hinton, J.; Baxter, S.C.: Enhancement of heat transfer with inclined baffles and ribs combined. Enhanc. Heat Transf. 9, 137–151 (2002)

    Article  Google Scholar 

  28. Mehta, B.; Khandekar, S.: Measurement of local heat transfer coefficient during gas liquid Taylor bubble train flow by infra-red thermography. Int. J. Heat Mass Flow 45, 41–52 (2014)

    Article  Google Scholar 

  29. Abdullah, N.; Talib, A.R.T.; Jaafar, A.A.; Salleh, M.A.M.; Chong, W.T.: The basics and issues of thermochromic liquid crystal calibrations. Exp. Therm. Fluid Sci. 34, 1089–1121 (2010)

    Article  Google Scholar 

  30. Grassi, W.; Testi, D.; Vista, D.D.; Torelli, G.: Calibration of a sheet of thermo-sensitive liquid crystals viewed non-orthogonally. Measurement 40, 898–903 (2007)

    Article  Google Scholar 

  31. Agrawal, S.; Bhagoria, J.L.; Malviya, R.K.: A detailed review on artificial roughness geometries for optimizing thermo-hydraulic performance of solar air heater. Int. J. Mod. Eng. Res. 4, 106–122 (2014)

    Google Scholar 

  32. Ower, E.; Pankhurst, R.C.: Measurement of Air Flow, 5th edn. Pergamon Press, Oxford (1977). (in SI units ed.)

    Google Scholar 

  33. ANSI/ASME, Measurement uncertainty, PTC 19, Part I, 1986; 1-1985

  34. Kreith, F.; Berger, S.A.: Mechanical Engineering Handbook. CRC Press, Boca Raton (1999)

    Google Scholar 

  35. Incropera, F.P.; Dewitt, P.D.; Bergman, T.L.; Lavine, A.S.: Fundamentals of Heat and Mass Transfer. Wiley, New York (2006)

    Google Scholar 

  36. Yongsiri, K.; Eiamsa-ard, P.; Wongcharee, K.; Eiamsa-ard, S.: Augmented heat transfer in a turbulent channel flow with inclined detached-ribs. Case Stud. Therm. Eng. 3, 1–10 (2014)

    Article  Google Scholar 

  37. Singh, S.; Chander, S.; Saini, J.S.: Heat transfer and friction factor of discrete V-down rib roughness solar air heater ducts. J. Renew. Sust. Energy 3, 013108 (2011)

    Article  Google Scholar 

  38. Promvonge, P.; Khanoknaiyakarn, C.; Kwankaomeng, S.; Thianpong, C.: Thermal behavior in solar air heater channel fitted with combined rib and delta-winglet. Int. Commun. Heat Mass Transf. 38, 749–756 (2011)

    Article  Google Scholar 

  39. Karwa, R.; Solanki, S.C.; Saini, J.S.: Thermo-hydraulic performance of solar air heaters having integral chamfered rib roughness on absorber plates. Energy 26, 161–176 (2001)

    Article  Google Scholar 

  40. Promvonge, P.; Thianpong, C.: Thermal performance assessment of turbulent channel flows over different shaped ribs. Int. Commun. Heat Mass Transf. 35, 1327–1334 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Eiamsa-ard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phila, A., Eiamsa-ard, S. & Thianpong, C. Thermal Performance Evaluation of a Channel Installed with Inclined-Baffle Turbulators. Arab J Sci Eng 45, 609–621 (2020). https://doi.org/10.1007/s13369-019-04097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04097-x

Keywords

Navigation