Skip to main content
Log in

Numerical Simulation of Steady Flow and Forced Convection Heat Transfer from Two Offset Square Cylinders Placed in a Channel

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Flow over two isothermal offset square cylinders in a channel is simulated for various offset distance (OD) and Reynolds number (Re). The distance between the cylinders in normal direction and the blockage ratio are fixed. Simulation is carried out for Re that varies from 1 to 40, and OD that varies from 1 to 10 for a fixed Prandtl number equals to 0.71. The hydrodynamic results and forced convection heat transfer are more pronounced for variation in Re and OD. Flow separation begins when Re is >5 from the rear wall of the cylinders. The onset of vortex shedding is found when Re is greater than 45 for OD upto 10. The average skin friction coefficient is reported to reveal the role of Re and OD. The top wall Nusselt number shows higher than remaining walls. The downstream offset cylinder is more pronounced for Re and OD, and it shows a nonlinear trend for average Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(C_\mathrm{f}\) :

Skin friction coefficient (\(2\tau _\mathrm{w}/\rho \overline{{u}_\mathrm{o}}^{2}\))

d :

Side of square cylinder, m

f :

Shedding frequency, Hz

H :

Height of the channel, m

k :

Thermal conductivity of water, Wm/K

Nu :

Nusselt number

Pr :

Prandtl number, \(\upsilon /\alpha \)

Re :

Reynolds number, \(\overline{{u}_\mathrm{o}}d/\upsilon \)

\(\bar{t}\) :

Dimensional time, s

t :

Nondimensional time

\(\bar{u},\bar{v}\) :

Dimensional velocity components along x, y axes, m/s

u, v :

Dimensionless velocity components along x, y axes

\(\overline{{u}_\mathrm{o}}\) :

Average horizontal velocity at the channel inlet, m/s

\(\bar{x},\bar{y}\) :

Dimensional Cartesian coordinates, m

x, y :

Dimensionless Cartesian coordinates

\(\infty \) :

Ambient condition

\(\alpha \) :

Thermal diffusivity, \(\hbox {m}^{2}\hbox {/s}\)

\(\beta \) :

Blockage ratio, d/H

\(\varepsilon \) :

Convergence criteria

\(\mu \) :

Dynamic viscosity, kg/m\(^{-\hbox {s}}\)

\(\upsilon \) :

Kinematic viscosity, \(\hbox {m}^{2}\hbox {/s}\)

\(\omega \) :

Dimensionless vorticity

\(\psi \) :

Dimensionless stream function

\(\theta \) :

Nondimensional temperature, \(\frac{T-T_{\infty }}{T_w-T_{\infty }}\)

avg:

Average

n :

Normal direction

w :

Wall

References

  1. Okajima, A.: Strouhal numbers of rectangular cylinders. J. Fluid Mech. 123, 379–398 (1982)

    Article  Google Scholar 

  2. Mukhopadhyay, A.; Biswas, G.; Sundararajan, T.: Numerical investigation of confined wakes behind a square cylinder in a channel. Int. J. Numer. Methods Fluids 14, 1473–1484 (1992)

    Article  MATH  Google Scholar 

  3. Sohankar, A.; Norberg, C.; Davidson, L.: Numerical simulation of unsteady low-Reynolds number flow around rectangular cylinders at incidence. J. Wind Eng. Ind. Aerodyn. 69–71, 189–201 (1997)

    Article  Google Scholar 

  4. Dutta, S.; Panigrahi, P.K.; Muralidhar, K.: Experimental investigation of flow past a square cylinder at an angle of incidence. J. Eng. Mech. 134, 788–803 (2008)

    Article  Google Scholar 

  5. Yoon, D.-H.; Yang, K.-S.; Choi, C.-B.: Flow past a square cylinder with an angle of incidence. Phys. Fluids 22, 043603 (2010). doi:10.1063/1.3388857

    Article  MATH  Google Scholar 

  6. Sharma, A.; Eswaran, V.: Heat and fluid flow across a square cylinder in the two dimensional laminar flow regime. Numer. Heat Transf. Part A 45, 247–269 (2004)

    Article  Google Scholar 

  7. Turki, S.: Numerical simulation of passive control on vortex shedding behind square cylinder using splitter plate. Eng. Appl. Comput. Fluid Mech. 2, 514–524 (2008)

    Google Scholar 

  8. Ali, M.S.M.; Doolan, C.J.; Wheatley, V.: Low Reynolds number flow over a square cylinder with a splitter plate. Phys. Fluids 23, 1–13 (2011)

    Google Scholar 

  9. Malekzadeha, S.; Sohankar, A.: Reduction of fluid forces and heat transfer on a square cylinder in a laminar flow regime using a control plate. Int. J. Heat Fluid Flow 34, 15–27 (2012)

    Article  Google Scholar 

  10. Breuer, M.; Bernsdorf, J.; Zeiser, T.; Durst, F.: Accurate computations of the laminar pow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume. Int. J. Heat Fluid Flow 21, 186–196 (2000)

    Article  Google Scholar 

  11. Galletti, B.; Bruneau, C.H.; Zannetti, L.; Iollo, D.A.: Low-order modelling of laminar flow regimes past a confined square cylinder. J. Fluid Mech. 503, 161–170 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rosales, J.L.; Ortega, A.; Humphrey, J.A.C.: A numerical simulation of the convective heat transfer in confined channel flow past square cylinders: comparison of inline and offset tandem pairs. Int. J. Heat Mass Transf. 44, 587–603 (2001)

    Article  MATH  Google Scholar 

  13. Valencia, A.; Paredes, R.: Laminar flow and heat transfer in confined channel flow past square bars arranged side by side. Heat Mass Transf. 39, 721–728 (2003)

    Article  Google Scholar 

  14. Sohankar, A.; Etminan, A.: Forced-convection heat transfer from tandem square cylinders in cross flow at low Reynolds numbers. Int. J. Numer. Methods Fluids 60, 733–751 (2009)

    Article  MATH  Google Scholar 

  15. Chatterjee, D.; Mondal, B.: Forced convection heat transfer from tandem square cylinders for various spacing ratios. Numer. Heat Transf. Part A 61, 381–400 (2012)

    Article  Google Scholar 

  16. Dhiman, K.; Sharma, N.; Kumar, S.: Wall effects on the cross-buoyancy around a squarecylinder in the steady regime. Br. J. Chem. Eng. 29, 253–264 (2012)

    Article  Google Scholar 

  17. Allanaboyina, V.V.S.; Prasad, D.; Dhiman, A.K.: CFD analysis of momentum andheat transfer around a pair of square cylinders in side-by-side arrangement. Heat Transf. Eng. 35, 398–411 (2014)

    Article  Google Scholar 

  18. Han, Z.; Zhou, D.; Gui, X.; Tu, J.: Numerical study of flow past four square-arranged cylinders using spectral element method. Comput. Fluids 84, 100–112 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Atmac, A.M.; Girgin, İ.; Ezgi, C.: CFD modeling of a diesel evaporator used in fuel cell systems. Int. J. Hydrog. Energy 41(14), 6004–6012 (2016)

    Article  Google Scholar 

  20. Kanna, P.R.; Das, M.K.: Conjugate heat transfer study of backward-facing step flow a benchmark problem. Int. J. Heat Mass Transf. 49, 3929–3941 (2006)

    Article  MATH  Google Scholar 

  21. Kanna, P.R.; Das, M.K.: Heat transfer study of two-dimensional laminar incompressible walljet flow under step. Numer. Heat Transf. Part A 50, 165–187 (2006)

    Article  Google Scholar 

  22. Das, M.K.; Kanna, P.R.: Application of an ADI scheme for steady and periodic solutions in alid driven cavity problem. Int. J. Numer. Methods Heat Fluid Flow 17, 799–822 (2007)

    Article  Google Scholar 

  23. Rahnama, M.; Hadi-Moghaddam, H.: Numerical investigation of convectiveheat transfer in unsteady laminar flow over a square cylinder in a channel. Heat Transf. Eng. 26, 21–29 (2005)

  24. Valencia, A.; Hinojosa, L.: Numerical solution of pulsating flow and heat transfer characteristicsin a channel with backward-facing step. Heat Mass Transf. 32, 143–148 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rajesh Kanna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanna, P.R., Sivasubramanian, M., Prabu, P.M. et al. Numerical Simulation of Steady Flow and Forced Convection Heat Transfer from Two Offset Square Cylinders Placed in a Channel. Arab J Sci Eng 42, 1795–1815 (2017). https://doi.org/10.1007/s13369-016-2311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2311-3

Keywords

Navigation