Skip to main content

Advertisement

Log in

MCNT-Reinforced Na3Fe2(PO4)3 as Cathode Material for Sodium-Ion Batteries

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

An iron-based phosphate composite (Na3Fe2(PO4)3@MCNT) has been synthesized by solid-state reaction method. As a sodium-ion battery cathode material, Na3Fe2(PO4)3@MCNT composite exhibits excellent reversible specific capacity of 101 mA h g−1 at 10 mA g−1 (0.1 C) and can reach high rate capability up to 96 mA h g−1 after 500 cycles at 100 mA g−1 (1 C). The enhanced sodium-ion storage performance of iron-based phosphate is likely attributed to the increased electronic conductivity and intercalation–deintercalation kinetic of sodium-ion with a high sodium-ion diffusion coefficient of up to 1.12 × 10−10 cm2 s−1 by incorporation of multi-walled carbon nanotube (MCNT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen, S.; Wu, C.; Shen, L.; Zhu, C.; Huang, Y.; Xi, K.; Maier, J.; Yu, Y.: Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 29, 48 (2017)

    Google Scholar 

  2. Jamesh, M.I.; Prakash, A.S.: Advancement of technology towards developing Na-ion batteries. J. Power Sources 378, 268–300 (2018)

    Google Scholar 

  3. Kang, W.; Wang, Y.; Xu, J.: Recent progress in layered metal dichalcogenide nanostructures as electrodes for high-performance sodium-ion batteries. J. Mater. Chem. A 5, 7667–7690 (2017)

    Google Scholar 

  4. Meng, X.: Atomic-scale surface modifications and novel electrode designs for high-performance sodium-ion batteries via atomic layer deposition. J. Mater. Chem. A 5, 10127–10149 (2017)

    Google Scholar 

  5. Ren, W.; Zhu, Z.; An, Q.; Mai, L.: Emerging prototype sodium-ion full cells with nanostructured electrode materials. Small 13, 23 (2017)

    Google Scholar 

  6. Zhu, Y.; Choi, S.H.; Fan, X.; Shin, J.; Ma, Z.; Zachariah, M.R.; Choi, J.W.; Wang, C.: Recent progress on spray pyrolysis for high performance electrode materials in lithium and sodium rechargeable batteries. Adv. Energy Mater. 7, 1601578 (2017)

    Google Scholar 

  7. Nayak, P.K.; Yang, L.; Brehm, W.; Adelhelm, P.: From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. 57, 102–120 (2018)

    Google Scholar 

  8. Chen, Z.; Du, B.; Xu, M.; Zhu, H.; Li, L.; Wang, W.: Polyacene coated carbon/LiFePO4 cathode for Li ion batteries: understanding the stabilized double coating structure and enhanced lithium ion diffusion kinetics. Electrochim. Acta 109, 262–268 (2013)

    Google Scholar 

  9. Tang, K.; Yu, X.; Sun, J.; Li, H.; Huang, X.: Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim. Acta 56, 4869–4875 (2011)

    Google Scholar 

  10. Wen, J.W.; Liu, H.J.; Wu, H.; Chen, C.H.: Synthesis and electrochemical characterization of LiCo1/3Ni1/3Mn1/3O2 by radiated polymer gel method. J. Mater. Sci. 42, 7696–7701 (2007)

    Google Scholar 

  11. Skundin, A.M.; Kulova, T.L.; Yaroslavtsev, A.B.: Sodium-ion batteries (a review). Russ. J. Electrochem. 54, 113–152 (2018)

    Google Scholar 

  12. Zhang, C.; Wei, Y.L.; Cao, P.F.; Lin, M.C.: Energy storage system: current studies on batteries and power condition system. Renew. Sustain. Energy Rev. 82, 3091–3106 (2018)

    Google Scholar 

  13. Duan, W.; Zhu, Z.; Li, H.; Hu, Z.; Zhang, K.; Cheng, F.; Chen, J.: Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. J. Mater. Chem. A 2, 8668–8675 (2014)

    Google Scholar 

  14. Jiang, Y.; Zhang, H.; Yang, H.; Qi, Z.; Yu, Y.: Na3V2(PO4)3@nitrogen, sulfur-codoped 3D porous carbon enabling ultra-long cycle life sodium-ion batteries. Nanoscale 9, 6048–6055 (2017)

    Google Scholar 

  15. Singh, P.; Shiva, K.; Celio, H.; Goodenough, J.B.: Eldfellite, NaFe(SO4)2: an intercalation cathode host for low-cost Na-ion batteries. Energy Environ. Sci. 8, 3000–3005 (2015)

    Google Scholar 

  16. Shiva, K.; Singh, P.; Zhou, W.; Goodenough, J.B.: NaFe2PO4(SO4)2: a potential cathode for a Na-ion battery. Energy Environ. Sci. 9, 3103–3106 (2016)

    Google Scholar 

  17. Zhao, T.; Li, L.; Chen, S.; et al.: The effect of chromium substitution on improving electrochemical performance of low-cost Fe–Mn based Li-rich layered oxide as cathode material for lithium-ion batteries. J. Power Sources 245, 898–907 (2014)

    Google Scholar 

  18. Liu, Y.; Zhou, Y.; Zhang, J.; Xia, Y.; Chen, T.; Zhang, S.: Monoclinic phase Na3Fe2(PO4)3: synthesis, structure, and electrochemical performance as cathode material in sodium-ion batteries. ACS Sustain. Chem. Eng. 5, 1306–1314 (2016)

    Google Scholar 

  19. Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997)

    Google Scholar 

  20. Zhang, J.; Fang, Y.; Xiao, L.; Qian, J.; Cao, Y.; Ai, X.; Yang, H.: Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries. ACS Appl. Mater. Interfaces. 9, 7177–7184 (2017)

    Google Scholar 

  21. Kapaev, R.R.; Chekannikov, A.A.; Novikova, S.A.; Kulova, T.L.; Skundin, A.M.; Yaroslavtsev, A.B.: Activation of NaFePO4 with maricite structure for application as a cathode material in sodium-ion batteries. Mendeleev Commun. 27, 263–264 (2017)

    Google Scholar 

  22. Kim, H.H.; Yu, I.H.; Kim, H.S.; Koo, H.J.; Whangbo, M.H.: On why the two polymorphs of NaFePO4 exhibit widely different magnetic structures: density functional analysis. Inorg. Chem. 54, 4966–4971 (2015)

    Google Scholar 

  23. Li, C.; Miao, X.; Chu, W.; Wu, P.; Tong, D.G.: Hollow amorphous NaFePO4 nanospheres as a high-capacity and high-rate cathode for sodium-ion batteries. J. Mater. Chem. A 3, 8265–8271 (2015)

    Google Scholar 

  24. Liu, Y.; Xu, S.; Zhang, S.; Zhang, J.; Fan, J.; Zhou, Y.: Direct growth of FePO4/reduced graphene oxide nanosheet composites for the sodium-ion battery. J. Mater. Chem. A 3, 5501–5508 (2015)

    Google Scholar 

  25. Xu, S.; Zhang, S.; Zhang, J.; Tan, T.; Liu, Y.: A maize-like FePO4@MCNT nanowire composite for sodium-ion batteries via a microemulsion technique. J. Mater. Chem. A 2, 7221–7228 (2014)

    Google Scholar 

  26. Liu, Y.; Xu, S.; Zhang, S.; Zhang, J.; Fan, J.; Zhou, Y.: Direct growth of FePO4/reduced graphene oxide nanosheet composites for the sodium-ion battery. J. Mater. Chem. A 3, 5501–5508 (2015)

    Google Scholar 

  27. Xu, S.; Zhang, S.; Zhang, J.; Tan, T.; Liu, Y.: A maize-like FePO4@MCNT nanowire composite for sodium-ion batteries via a microemulsion technique. J. Mater. Chem. A 2, 7221–7228 (2014)

    Google Scholar 

  28. Liu, Y.; Zhou, Y.; Zhang, J.; Zhang, S.; Ren, P.: Amorphous iron phosphate/carbonized polyaniline nanorods composite as cathode material in sodium-ion batteries. J. Solid State Electrochem. 2, 479–487 (2015)

    Google Scholar 

  29. Kim, J.; Seo, D.-H.; Kim, H.; Park, I.; Yoo, J.-K.; Jung, S.-K.; Park, Y.-U.; Goddard Iii, W.A.; Kang, K.: Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries. Energy Environ. Sci. 8, 540–545 (2015)

    Google Scholar 

  30. Kim, H.; Shakoor, R.A.; Park, C.; Lim, S.Y.; Kim, J.-S.; Jo, Y.N.; Cho, W.; Miyasaka, K.; Kahraman, R.; Jung, Y.; Choi, J.W.: Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv. Funct. Mater. 23, 1147–1155 (2013)

    Google Scholar 

  31. Chen, X.; Du, K.; Lai, Y.; Shang, G.; Li, H.; Xiao, Z.; Chen, Y.; Li, J.; Zhang, Z.: In-situ carbon-coated Na2FeP2O7 anchored in three-dimensional reduced graphene oxide framework as a durable and high-rate sodium-ion battery cathode. J. Power Sources 357, 164–172 (2017)

    Google Scholar 

  32. Barpanda, P.; Liu, G.; Ling, C.D.; Tamaru, M.; Avdeev, M.; Chung, S.C.; Yamada, Y.; Yamada, A.: Na2FeP2O7: a safe cathode for rechargeable sodium-ion batteries. Chem. Mater. 25, 3480–3487 (2013)

    Google Scholar 

  33. Chen, X.; Du, K.; Lai, Y.; et al.: In-situ carbon-coated Na2FeP2O7 anchored in three-dimensional reduced graphene oxide framework as a durable and high-rate sodium-ion battery cathode. J. Power Sources 357, 164–172 (2017)

    Google Scholar 

  34. Fang, Y.; Liu, Q.; Xiao, L.; et al.: A high-performance olivine NaFePO4 microsphere cathode synthesized by aqueous electrochemical displacement method for na ion batteries. ACS Appl. Mater. Interfaces. 31, 17977–17989 (2015)

    Google Scholar 

  35. Cao, Y.; Liu, Y.; Chen, T.; Xia, X.; Zhang, L.; Zhang, J.; Xia, Y.: Sol-gel synthesis of porous Na3Fe2(PO4)3 with enhanced sodium-ion storage capability. Ionics 3, 1083–1090 (2019)

    Google Scholar 

  36. Lepage, D.; Sobh, F.; Kuss, C.; Liang, G.; Schougaard, S.B.: Delithiation kinetics study of carbon coated and carbon free LiFePO4. J. Power Sources 256, 61–65 (2014)

    Google Scholar 

  37. Wang, W.; Liu, X.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y.Y.; et al.: A high voltage cathode of Na2+2xFe2–x(SO4)3 intensively protected by nitrogen-doped graphene with improved electrochemical performance of sodium storage. J. Mater. Chem. A 6, 4354–4364 (2018)

    Google Scholar 

  38. Sun, A.; Beck, F.R.; Haynes, D.; Poston, J.A.; Narayanan, S.R.; Kumta, P.N.; Manivannan, A.: Synthesis, characterization, and electrochemical studies of chemically synthesized NaFePO4. Mater. Sci. Eng., B 177, 1729–1733 (2012)

    Google Scholar 

  39. Kim, H.; Shakoor, R.A.; Park, C.; et al.: Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv. Funct. Mater. 23, 1147–1155 (2013)

    Google Scholar 

  40. Yanjun, C.; Youlong, X.; Xiaofei, S.; et al.: F-doping and V-defect synergetic effects on Na3V2(PO4)3/C composite: a promising cathode with high ionic conductivity for sodium ion batteries. J. Power Sources 397, 307–317 (2018)

    Google Scholar 

  41. Li, L.; Liu, X.; Tang, L.; Liu, H.; Wang, Y.G.: Improved electrochemical performance of high voltage cathode Na3V2(PO4)2F3 for Na-ion batteries through potassium doping. J. Alloys Compd. 790, 203–211 (2019)

    Google Scholar 

  42. Guan, W.; Pan, B.; Zhou, P.; et al.: A high capacity, good safety and low cost Na2FeSiO4-based cathode for rechargeable sodium-ion battery. ACS Appl. Mater. Interfaces. 27, 22369–22377 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the financial support of Shanghai Science and Technology Commission (14DZ2261000). We thank Proof-Reading-Service.com (http://www.proof-reading-service.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, X., Cao, Y., Yao, L. et al. MCNT-Reinforced Na3Fe2(PO4)3 as Cathode Material for Sodium-Ion Batteries. Arab J Sci Eng 45, 143–151 (2020). https://doi.org/10.1007/s13369-019-03979-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03979-4

Keywords

Navigation