Skip to main content
Log in

Optimal Gain Selection Strategy in Back EMF Observer for Position Sensorless Operation of BLDC Motors

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article presents the design and realization of a new unknown input back EMF observer for position sensorless operation of brushless DC motor. In the proposed observer, the back EMF is considered to be an unknown interaction input from the system structure and has been estimated as a state. In the observer structure, a combination of linear and nonlinear error feedback has been used. The observer gain is the key determining factor for the fast convergence and stability of the observer. A bio-inspired optimization algorithm called Differential Evolution Krill Herd, an efficient and novel algorithm rarely used in drives application, is further developed in this work to determine the optimal value of the observer gain. Observers with optimized gains have enhanced performance in reducing the absolute mean and peak errors in the estimated speed compared to conventional back EMF observers. This can ensure a more accurate and error-free operation of the closed-loop controllers used in the process. The operating performances are verified by ways of simulation and experiment to demonstrate the convergence, robustness, as well as the effectiveness of the observer. The sensitivity of the observer with parameter variation has also been verified, and the results favour the suitability of the observer in sensorless operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hendershort Jr., J.R.; Miller, T.J.E.: Design of Brushless Permanent Magnet Motors. Magana Physics Pub, Clarendon Press, Hillsboro (1994)

    Google Scholar 

  2. Acarnley, P.P.; Watson, J.F.: Review of position-sensorless operation of brushless permanent-magnet machines. IEEE Trans. Ind. Electron. 53(2), 352–362 (2006)

    Article  Google Scholar 

  3. Finch, J.W.; Giaouris, D.: Controlled AC electrical drives. IEEE Trans. Ind. Electron. 55(2), 481–491 (2008)

    Article  Google Scholar 

  4. Kim, T.; Lee, H.W.; Ehsani, M.: Position sensorless brushless DC motor/generator drives: review and future trends. IET Electr. Power Appl. 1(4), 557–564 (2007)

    Article  Google Scholar 

  5. Li, T.; Zhou, J.: High-stability position-sensorless control method for brushless dc motors at low speed. IEEE Trans. Power Electron. 34(5), 4895–4903 (2019)

    Article  Google Scholar 

  6. Damodharan, P.; Vasudevan, K.: Sensorless brushless DC motor drive based on the zero-crossing detection of back electromotive force (EMF) from the line voltage difference. IEEE Trans. Energy Convers. 25(3), 661–668 (2010)

    Article  Google Scholar 

  7. Iizuka, K.; Uzuhashi, H.; Kano, M.: Microcomputer control for sensorless brushless motor. IEEE Trans. Ind. Appl. 21(4), 595–601 (1985)

    Article  Google Scholar 

  8. Kim, T.H.; Ehsani, M.: Sensorless control of BLDC motors from near-zero to high speeds. IEEE Trans. Power Electron. 19(6), 1635–1645 (2004)

    Article  Google Scholar 

  9. Ogasawara, S.; Akagi, H.: An approach to position sensorless drive for brushless DC motors. IEEE Trans. Ind. Appl. 27(5), 928–993 (1991)

    Article  Google Scholar 

  10. Su, G.J.; McKeever, J.W.: Low cost sensorless control of brushless DC motors with improved speed range. IEEE Trans. Power Electron. 19(2), 296–302 (2004)

    Article  Google Scholar 

  11. Lai, Y.S.; Shyu, F.S.; Tseng, S.S.: New initial position detection for three-phase brushless DC motor without position and current sensors. IEEE Trans. Ind. Appl. 39(2), 485–491 (2003)

    Article  Google Scholar 

  12. Terzic, B.; Jadric, M.: Design and implementation of the extended Kalman filter for the speed and rotor position estimation of brushless DC motor. IEEE Trans. Ind. Electron. 48(6), 1065–1073 (2001)

    Article  Google Scholar 

  13. Yu, L.; Li, C.; Fei, S.: Any-wall touch control system with switching filter based on 3-D sensor. IEEE Sens. J. 18(11), 4697–4703 (2018)

    Article  Google Scholar 

  14. Yu, L.: Image noise preprocessing of interactive projection system based on switching filtering scheme. Complexity 2018, 1–11 (2018)

    Google Scholar 

  15. Yu, L.; Hou, J.: Large-screen interactive imaging system with switching federated filter method based on 3D sensor. Complexity 2018, 1–11 (2018)

    Google Scholar 

  16. Hou, J.; Yu, L.; Fei, S.: Four-point trapezoidal calibration algorithm for human-computer interaction system based on 3D sensor. Measurement 134, 730–738 (2019)

    Article  Google Scholar 

  17. Singh, B.; Singh, S.: State of the art on permanent magnet brushless DC motor drives. J. Power Electron. 9(1), 1–17 (2009)

    MathSciNet  Google Scholar 

  18. Antonello, R.; Ortombina, L.; Tinazzi, F.: Enhanced low-speed operations for sensorless anisotropic PM synchronous motor drives by a modified back-EMF observer. IEEE Trans. Ind. Electron. 65(4), 3069–3076 (2018)

    Article  Google Scholar 

  19. Lu, Q.; Zhu, X.; Quan, L.: Rotor position estimation scheme with harmonic ripple attenuation for sensorless controlled permanent magnet synchronous motors. IET Electr. Power Appl. 12(8), 1200–1206 (2018)

    Article  Google Scholar 

  20. Kim, T.S.; Park, B.G.; Lee, D.M.: A new approach to sensorless control method for brushless DC motors. Int. J. Control Autom. Syst. 6(4), 477–487 (2008)

    Google Scholar 

  21. Talbi, E.G.: Metaheuristics: from Design to Implementation. Wiley, Hoboken (2009)

    Book  Google Scholar 

  22. Cui, Z.; Gao, X.: Theory and applications of swarm intelligence. Neural Comput. Appl. 21(2), 205–206 (2012)

    Article  Google Scholar 

  23. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  24. Gandomi, A.H.; Alavi, A.H.: Krill herd: a new bio inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)

    Article  MathSciNet  Google Scholar 

  25. Gandomi, A.H.; Alavi, A.H.: An introduction of krill herd algorithm for engineering optimization. J. Civ. Eng. Manag. 22(3), 302–310 (2016)

    Article  Google Scholar 

  26. Bolaji, A.; Al-Betar, M.; Awadallah, M.: A comprehensive review: krill herd algorithm (KH) and its applications. Appl. Soft Comput. 49, 437–446 (2016)

    Article  Google Scholar 

  27. Wang, G.G.; Gandomi, A.H.; Alavi, A.H.: Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Comput. Appl. 25(2), 297–308 (2014)

    Article  Google Scholar 

  28. Lin, S.; Zhang, W.: An adaptive sliding-mode observer with a tangent function-based PLL structure for position sensorless PMSM drives. J. Electr. Power Energy Syst. 88, 63–74 (2017)

    Article  Google Scholar 

  29. Qiao, Z.; Shi, T.; Wang, Y.: New sliding-mode observer for position sensorless control of permanent-magnet synchronous motor. IEEE Trans. Ind. Electron. 60(2), 710–719 (2013)

    Article  Google Scholar 

  30. Johnson, C.D.: Accommodation of external disturbances in linear regulator and servomechanism problems. IEEE Trans. Autom. Contr. 16, 635–644 (1971)

    Article  Google Scholar 

  31. Maes, J.; Melkebeek, J.A.: Speed-sensorless direct torque control of induction motors using an adaptive flux observer. IEEE Trans. Ind. Appl. 36(3), 778–785 (2000)

    Article  Google Scholar 

  32. Fakham, H.; Djemaï, M.; Busawon, K.: Design and practical implementation of a back EMF sliding mode observer for a brushless DC motor. IET Electr. Power Appl. 2(6), 353–361 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Susan Alex.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alex, S.S., Daniel, A.E. Optimal Gain Selection Strategy in Back EMF Observer for Position Sensorless Operation of BLDC Motors. Arab J Sci Eng 45, 1345–1356 (2020). https://doi.org/10.1007/s13369-019-03908-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03908-5

Keywords

Navigation