Skip to main content
Log in

Error Analysis and Optimization of Shear Yield Stress Model for Magnetorheological Fluid

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In order to use shear yield stress model of magnetorheological fluid more accurately, the influence of particle size, particle spacing and magnetic field intensity on the model error of single-chain dipole is compared and analyzed based on the finite element model. The results show that particle size and particle spacing have few effects on the single-chain dipole model, but the magnetic field intensity is the most important factor affecting the error of single-chain dipole model. As the magnetic field strengthens, the error of the single-chain dipole model decreases gradually. Based on the research, the single-chain dipole model is optimized by finite element method. Experimental results show that the error of optimized single-chain dipole model is reduced by 80% compared with that of the model before optimization, which is more accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bica, I.; Liu, Y.D.; Choi, H.J.; et al.: Physical characteristics of magnetorheological suspensions and their applications. J. Ind. Eng. Chem. 19(2), 394–406 (2013). https://doi.org/10.1016/j.jiec.2012.10.008

    Article  Google Scholar 

  2. Wang, D.M.; Tian, Z.Z.; Meng, Q.R.; et al.: Development of a novel two-layer multiplate magnetorheological clutch for high-power applications. Smart Mater. Struct. (2013). https://doi.org/10.1088/0964-1726/22/8/085018

    Google Scholar 

  3. Wang, S.Y.; Chen, F.; Tian, Z.Z.; et al.: Development of water-cooling transmission device for magnetorheological fluid. J. Magn. 23(2), 285–292 (2018). https://doi.org/10.4283/JMAG.2018.23.2.285

    Article  Google Scholar 

  4. Kikuchi, T.; Abe, I.; Inoue, A.; et al.: Characteristics of a magnetorheological fluid in high shear rate. Smart Mater. Struct. (2016). https://doi.org/10.1088/0964-1726/25/11/115021

    Google Scholar 

  5. Fujitani, H; Sodeyama, H; Tomura, T.; et al: Development of 400 kN magnetorheological damper for a real base-isolated building. In: Smart Structures and Materials 2003 Conference, March 2003, pp. 265–276 (2003). https://doi.org/10.1117/12.483810

  6. Rizzo, R.; Musolino, A.; Lai, H.C.: An electrodynamic/magnetorheological clutch powered by permanent magnets. IEEE Trans. Magn. (2017). https://doi.org/10.1109/tmag.2016.2628822

    Google Scholar 

  7. Shamieh, H.; Sedaghati, R.: Development, optimization, and control of a novel magnetorheological brake with no zero-field viscous torque for automotive applications. J. Intell. Mater. Syst. Struct. 29(16), 3199–3213 (2018). https://doi.org/10.1177/1045389X18758186

    Article  Google Scholar 

  8. Damiani, R.; Sun, L.Z.: Microstructural characterization and effective viscoelastic behavior of magnetorheological elastomers with varying acetone contents. Int. J. Damage Mech. 26(1), 103–117 (2017). https://doi.org/10.1177/1056789516657676

    Article  Google Scholar 

  9. Chen, F.; Tian, Z.Z.; Wu, X.F.: Research on preparation and characteristics of a novel transmission magnetorheological fluid. J. Magn. 23(1), 1–7 (2018). https://doi.org/10.4283/JMAG.2018.23.1.099

    Article  Google Scholar 

  10. Jonkkari, I.; Sorvali, M.; Huhtinen, H.; et al.: Characterization of bidisperse magnetorheological fluids utilizing maghemite (gamma-Fe2O3) nanoparticles synthetized by flame spray pyrolysis. Smart Mater. Struct. (2017). https://doi.org/10.1088/1361-665x/aa7f7d

    Google Scholar 

  11. Ghaffari, A.; Hashemabadi, S.H.; Ashtiani, M.: A review on the simulation and modeling of magnetorheological fluids. J. Intell. Mater. Syst. Struct. 26(8), 881–904 (2015). https://doi.org/10.1177/1045389x14546650

    Article  Google Scholar 

  12. Ruiz-Lopez, J.A.; Fernandez-Toledano, J.C.; Klingenberg, D.J.; et al.: Model magnetorheology: a direct comparative study between theories, particle-level simulations and experiments, in steady and dynamic oscillatory shear. J. Rheol. 60(1), 61–74 (2016). https://doi.org/10.1122/1.4935850

    Article  Google Scholar 

  13. Gundermann, T.; Cremer, P.; Lowen, H.; et al.: Statistical analysis of magnetically soft particles in magnetorheological elastomers. Smart Mater. Struct. (2017). https://doi.org/10.1088/1361-665x/aa5f96

    Google Scholar 

  14. Peng, X.H.; Li, H.: Analysis of the magnetomechanical behavior of MRFs based on micromechanics incorporating a statistical approach. Smart Mater. Struct. 16(6), 2477–2485 (2007). https://doi.org/10.1088/0964-1726/16/6/051

    Article  Google Scholar 

  15. Yi, C.J.; Peng, X.H.; Zhao, C.W.: A magnetic-dipoles-based micro-macro constitutive model for MRFs subjected to shear deformation. Rheol. Acta 49(8), 815–825 (2010). https://doi.org/10.1007/s00397-010-0468-3

    Article  Google Scholar 

  16. Huang, J.; Yang, Y.: Shear transmission properties of magnetorheological fluids between two parallel disks. Disaster Adv. 6(6), 284–291 (2013)

    Google Scholar 

  17. Zhou, J.F.; Mo, J.W.; Shao, C.L.; et al.: Effects of magnetized walls on the particle structure and the yield stress of magnetorheological fluids. J. Magn. Magn. Mater. 389(3), 124–129 (2015). https://doi.org/10.1016/j.jmmm.2015.03.088

    Article  Google Scholar 

  18. Xu, Z.D.; Guo, W.Y.; Chen, B.B.: Preparation, property tests, and limited chain model of magnetorheological fluid. J. Mater. Civ. Eng. (2017). https://doi.org/10.1061/(asce)mt.1943-5533.0001190

    Google Scholar 

  19. Ruiz-Lopez, J.A.; Fernandez-Toledano, J.C.; Klingenberg, D.J.; et al.: Model magnetorheology: a direct comparative study between theories, particle-level simulations and experiments, in steady and dynamic oscillatory shear. J. Rheol. 60(1), 61–74 (2016). https://doi.org/10.1122/1.4935850

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 51575512 and 51875560) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Hp., Chen, F., Liu, Ch. et al. Error Analysis and Optimization of Shear Yield Stress Model for Magnetorheological Fluid. Arab J Sci Eng 44, 7779–7787 (2019). https://doi.org/10.1007/s13369-019-03903-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03903-w

Keywords

Navigation