Skip to main content
Log in

Experimental and Theoretical Study to Optimize Rate Constants of Adsorption and Desorption of the Wastewater Treatment Using Waste of Tea Plant

  • Research Article -Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present work is used to remove three multi-heavy metal components from a simulated wastewater using waste of tea (WOT). Physical, mechanical and multi-step chemical treatments were applied on the WOT as an adsorbent being used for the removal of three multi-heavy metal components from a simulated wastewater. There are new techniques of WOT adsorbents prepared for the adsorption studies, using different pH (2, 4 and 5.5). The fixed-bed column study was carried out under multilayered fixed-bed columns. It was found that the adsorption of multi-heavy metal component was significantly increased in the first layer of pH 2 removing Cr, second layer of pH 4 removing Zn and third layer of pH 5.5 removing Cu. Produce mathematical model covers the most important parameters like the effect pH, partial pressure and concentration of heavy metals effect on the rate of adsorption and desorption. Results obtained from the application of the derived model are graphically compared with experimental results, and a high degree of matching is obtained. Newton–Raphson is a numerical optimization technique used to specify the optimum values of rate constants of adsorption and desorption of the WOT for Cr, Cu and Zn to increase the performance of mathematical model. The novelty of this study is that it is used to evaluate the performance of bio-waste to remove heavy metals using more than one technique to calculate the rate constants of adsorption and desorption. Still, further studies are required to confirm with the outcomes of this study using this active technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Symbols:

Function

HM1 :

Heavy metals

\( K_{\text{ad,1}}^{ + } \) :

Rate constant adsorption of forward direction

CHM1.Sr :

Concentration of pollutants of adsorption surf-modified activated carbon

C A :

Concentration of adsorption

C Ai :

Initial concentration of adsorption

C V :

Concentration of modified activated carbon

\( K_{\text{ad,1}}^{ - } \) :

Rate constant adsorption of reverse direction

\( K_{\text{Sr,1}}^{ - } \) :

Rate constant desorption of reverse direction

\( K_{\text{Sr,1}}^{ + } \) :

Rate constant desorption of forward direction

P A :

Partial pressure

\( r_{\text{ad}} \) :

Rate of absorption

r d :

Rate of desorption

r A :

Rate of adsorption

Sr:

Surface of modified activated carbon

Vi :

Volumetric flow rate

V:

Volume

t :

Time (s)

References

  1. Lagergren, S.: About the theory of so called adsorption of solute substances. Ksver Veterskapsakad Handl. 24(1898), 1–6 (1898)

    Google Scholar 

  2. Freundlich, H.: Over the adsorption in solution. J. Phys. Chem. 57(1906), 385–470 (1906)

    Google Scholar 

  3. Langmuir, I.: Adsorption of gases on plane surfaces of glass, mica, platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918)

    Article  Google Scholar 

  4. Temkin, M.; Pyzhev, V.: Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim URSS 12(1940), 217–222 (1940)

    Google Scholar 

  5. Redlich, O.; Peterson, D.L.: A useful adsorption isotherm. J. Phys. Chem. 63(6), 1024–1026 (1959)

    Article  Google Scholar 

  6. Weber, J.; Morris, J.: Kinetics of adsorption on carbon from solutions. J. Sanit. Eng. 89(1963), 31–39 (1963)

    Google Scholar 

  7. Baes, C.; Messmer, R. (eds.): The hydrolysis of cations. Krieger Publishing Co., Florida (1976)

    Google Scholar 

  8. Poots, V.; McKay, G.; Healy, J.: Removal of basic dye from effluent using wood as an adsorbent. J. Water Pollut. Control Fed. 50(1978), 926–935 (1978)

    Google Scholar 

  9. Patil, C.S.; Gunjal, D.B.; Naik, V.M.; Harale, N.S.: Waste tea residue as a low cost adsorbent for removal of hydralazine hydrochloride pharmaceutical pollutant from aqueous media: an environmental remediation. J. Clean. Prod. 206(1), 407–418 (2019)

    Article  Google Scholar 

  10. Mahaly, M.; Senthilkumar, A.K.; Arumugam, S.; Kaliyaperumal, C.; Karupannan, N.: Vermicomposting of distillery sludge waste with tea leaf residues. Sustain. Environ. Res. 28(5), 223–227 (2018)

    Article  Google Scholar 

  11. Shah, J.; Rasul Jan, M.; ul Haq, A.; Zeeshan, M.: Equilibrium, kinetic and thermodynamic studies for sorption of Ni (II) from aqueous solution using formaldehyde treated waste tea leaves. J. Saudi Chem. Soc. 19(3), 301–310 (2015)

    Article  Google Scholar 

  12. Ahsan, M.A.; Katla, S.K.; Islam, M.T.; Hernandez-Viezcas, J.A.: Adsorptive removal of methylene blue, tetracycline and Cr(VI) from water using sulfonated tea waste. Environ. Technol. Innov. 11, 23–40 (2018)

    Article  Google Scholar 

  13. Cherdchoo, W.; Nithettham, S.; Charoenpanich, J.: Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea. Chemosphere 221, 758–767 (2019)

    Article  Google Scholar 

  14. Aksu, Z.; Kutsa, T.: Bioseparation process for removing lead (II) ions from waste water by using vulgaris. J. Chem. Technol. Biotechnol. 52(1), 109–118 (1991)

    Article  Google Scholar 

  15. Kannan, K.; Sundaram, M.: Kinetics and mechanism of removal of methylene blue by adsorption on various carbons - a comparative study. Dyes Pigments 51(2001), 25–40 (2001)

    Article  Google Scholar 

  16. Marshall, W.; Champagne, E.; Evans, W.: Use of rice milling byproducts (hulls & bran) to remove metal ions from aqueous solution. J. Environ. Sci. Health 9(1993), 1977–1992 (1993)

    Google Scholar 

  17. Al-Ashesh, S.; Banat, F.; Al-Omari, R.; Duvnjak, Z.: Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data. Chemosphere 41(2000), 659–665 (2000)

    Article  Google Scholar 

  18. Ajmal, M.; Rao, R.A.K.; Ahmad, R.; Ahmad, J.: Adsorption studies on citrus reticulate (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater. J. Hazard. Mater. 79(2000), 117–131 (2000)

    Article  Google Scholar 

  19. Pal, D.: Subodh Kumar Maiti, Abatement of cadmium (Cd) contamination in sediment using tea waste biochar through meso-microcosm study. J. Clean. Prod. 212(1), 986–996 (2019)

    Article  Google Scholar 

  20. Ankur, G.; Chandrajit, B.: Biosorptive performance of escherichia coli supported on waste tea biomass (WTB) for removal of Cr(VI) to avoid the contamination of ground water: a comparative study between biosorption and SBB system. Groundwater Sustain. Dev. 1(1–2), 12–22 (2015)

    Google Scholar 

  21. Boxiong, S.; Linghui, T.; Fukuan, L.; Xiao, Z.; Huan, X.; Surjit, S.: Elemental mercury removal by the modified bio-char from waste tea. Fuel 187, 189–196 (2017)

    Article  Google Scholar 

  22. Ricordel, S.; Taha, S.; Cisse, I.; Dorange, G.: Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling. Sep. Purif. Technol. 24(2001), 389–401 (2001)

    Article  Google Scholar 

  23. Iqbal, M.; Saeed, A.; Akhatar, N.: Petiolar felt-sheath of palm: a new bio sorbent for the removal of heavy metals from contaminated water. Bioresour. Technol. 81(2002), 151–153 (2002)

    Article  Google Scholar 

  24. Aksu, Z.; Acýkel, U.; Kabasakal, E.; Tezer, S.: Equilibrium modeling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge. Water Res. 36(12), 3063–3073 (2002)

    Article  Google Scholar 

  25. Selvaraj, K.; Manonmani, S.; Pattabhi, S.: Removal of hexavalent chromium using distillery sludge. Bioresour. Technol. 89(2), 207–211 (2003)

    Article  Google Scholar 

  26. Nur, A.; Ahmmed, S.; Kamriah, N.: Hypothetical T-shirt model pore for waste water treatment by using modified activated carbon. Wulfina J. 19(2012), 34–56 (2012)

    Google Scholar 

  27. Mahavi, A.H.; Naghipour, D.; Vaezi, F.; Nazmara, S.: Teawaste as an adsorbent for heavy metal removal from industrial wastewaters. Am. J. Appl. Sci. 2(1), 372–375 (2005)

    Article  Google Scholar 

  28. Wasewar, K.; Mohammad, A.; Prasad, B.; Mishra, I.: Adsorption of Zn using factory tea waste: kinetics, equilibrium and thermodynamics. Clean Soil Water Air 36(3), 320–329 (2008)

    Article  Google Scholar 

  29. Cay, S.; Uyanik, A.; Ozasik, A.: Single and binary component adsorption on copper (II) and cadmium (II) from aqueous solution using tea industry waste. Sep. Purif. Technol. 38(2004), 273–280 (2004)

    Article  Google Scholar 

  30. Yujiao, K.; Qinyan, Y.; Dong, L.; Yuwei, W.; Baoyu, G.: Preparation and characterization of activated carbons from waste tea by H3PO4 activation in different atmospheres for oxytetracycline removal. J. Taiwan Inst. Chem. Eng. 71, 494–500 (2017)

    Article  Google Scholar 

  31. Malkoc, E.; Nuhoglu, Y.: Investigations of Nickel (II) removal from aqueous solutions using tea factory waste. J. Hazard. Mater. 127(2005), 120–127 (2005)

    Article  Google Scholar 

  32. Malkoc, E.; Nuhoglu, Y.: Fixed bed studies for the sorption of chromium (IV) onto tea factory waste. Chem. Eng. Sci. 61(2006), 4363–4372 (2006)

    Article  Google Scholar 

  33. Malkoc, E.; Nuhoglu, Y.: Removal of Ni(II) ions from aqueous solutions using waste of tea factory: adsorption on a fixed-bed column. J. Hazard. Mater. B135(2006), 328–336 (2006)

    Article  Google Scholar 

  34. Malkoc, E.; Nuhoglu, Y.: Potential of tea factory waste for chromium (VI) removal from aqueous solutions: thermodynamic and kinetic studies. Sep. Purif. Technol. 54(2007), 291–298 (2007)

    Article  Google Scholar 

  35. Amarasinghe, B.; Williams, A.: Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J. 132(2007), 299–309 (2007)

    Article  Google Scholar 

  36. Wasewar, K.L.; Ravichandra, Y.; Anil, K.M.; Godbole, V.: Adsorption mechanism for the adsorption of heavy metals using tea waste as an adsorbent. J. Future Eng. Technol. 3(1), 41–46 (2007)

    Google Scholar 

  37. Wasewar, K.L.; Mohammad, A.; Prasad, B.; Mishra, I.M.: Batch adsorption of Zn using tea factory waste as an adsorbent. Desalination 244(2009), 66–71 (2009)

    Article  Google Scholar 

  38. Wasewar, K.L.; Mohammad, A.; Prasad, B.: Characterization of factory tea waste as an adsorbent for removal of heavy metals. J. Future Eng. Technol. 3(3), 47–53 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmmed Saadi Ibrehem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrehem, A.S. Experimental and Theoretical Study to Optimize Rate Constants of Adsorption and Desorption of the Wastewater Treatment Using Waste of Tea Plant. Arab J Sci Eng 44, 7361–7370 (2019). https://doi.org/10.1007/s13369-019-03896-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03896-6

Keywords

Navigation