Skip to main content
Log in

Mechanism of FCC structure formation in NiCoFeCuMn equiatomic high-entropy alloys

  • Research Article - Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Microstructural formation mechanism of NiCoFeCuMn equiatomic high-entropy alloys has been discussed from a viewpoint of interaction energy. It is indicated that when the interaction energy (Iij) is higher than a threshold value (It), spinodal decomposition may occur, leading to segregation of similar atoms and formation of a phase independently. Segregation of similar atoms is prone to appear in the alloys containing Fe–Cu or Cu–Cr components. However, when it is Iij < It, heterogeneous atoms segregation may appear. Components like Mn–Ni, Mn–Cu and Mn–Co et al. in the NiCoFeCuMn alloy prone to segregate. For the equiatomic HEAs, interaction energy Iij can effectively reflect the formation mechanism of single-FCC crystal structure and is a principle criterion for material design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004)

    Article  Google Scholar 

  2. Li, W.; Liu, P.; Liaw, P.K.: Microstructures and properties of high-entropy alloy films and coatings: a review. Mater. Res. Lett. 6, 199–229 (2018)

    Article  Google Scholar 

  3. Yeh, J.-W.; Lin, S.-J.: Breakthrough applications of high-entropy materials. J. Mater. Res. 33, 3129–3137 (2018)

    Article  Google Scholar 

  4. Koch, C.C.: Nanocrystalline high-entropy alloys. J. Mater. Res. 32, 3435–3444 (2017)

    Article  Google Scholar 

  5. Chou, H.P.; Chang, Y.S.; Chen, S.K.; Yeh, J.W.: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x≤2) high-entropy alloys. Mater. Sci. Eng. B 163, 184–189 (2009)

    Article  Google Scholar 

  6. Wang, X.; Zhang, Y.; Qiao, Y.; Chen, G.: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15, 357–362 (2007)

    Article  Google Scholar 

  7. Hsu, C.Y.; Wang, W.R.; Tang, W.Y.; Chen, S.K.; Yeh, J.W.: Microstructure and mechanical properties of new AlCoxCrFeMo0.5Ni high-entropy alloys. Adv. Eng. Mater. 12, 44–49 (2010)

    Article  Google Scholar 

  8. Sheng, G.; Liu, C.T.: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 21, 433–446 (2011)

    Article  Google Scholar 

  9. Dong, Y.; Lu, Y.; Jiang, L.; Wang, T.; Li, T.: Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys. Intermetallics 52, 105–109 (2014)

    Article  Google Scholar 

  10. Poletti, M.; Battezzati, L.: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 75, 297–306 (2014)

    Article  Google Scholar 

  11. Zhang, Y.; Zhou, Y.J.: Solid solution formation criteria for high entropy alloys. Mater. Sci. Forum. Trans. Tech. Publ. 561, 1337–1339 (2007)

    Article  Google Scholar 

  12. Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534–538 (2008)

    Article  Google Scholar 

  13. Ren, M.X.; Li, B.S.; Fu, H.Z.: Formation condition of solid solution type high-entropy alloy. T. Nonferr. Metal. Soc. 23, 991–995 (2013)

    Article  Google Scholar 

  14. Otto, F.; Yang, Y.; Bei, H.; George, E.P.: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628–2638 (2013)

    Article  Google Scholar 

  15. Zhang, F.; Zhang, C.; Chen, S.; Zhu, J.; Cao, W.; Kattner, U.: An understanding of high entropy alloys from phase diagram calculations. Calphad 45, 1–10 (2014)

    Article  Google Scholar 

  16. Senkov, O.; Miller, J.; Miracle, D.; Woodward, C.: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015)

    Article  Google Scholar 

  17. Troparevsky, M.C.; Morris, J.R.; Kent, P.R.; Lupini, A.R.; Stocks, G.M.: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015)

    Google Scholar 

  18. Hao, S.M.: Material Thermodynamics. Chemical Industry Press, Bei Jing (2004)

    Google Scholar 

  19. Hillert, M.: Phase Equilibria, Phase Diagrams and Phase Transformations Their Thermodynamic Basics. Cambridge University Press, New York (2008)

    MATH  Google Scholar 

  20. Chen, M.R.; Lin, S.J.; Yeh, J.W.; Chuang, M.H.; Chen, S.K.; Huang, Y.S.: Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall. Mater. Trans. A 37, 1363–1369 (2006)

    Article  Google Scholar 

  21. Huang, Y.S.; Chen, L.; Lui, H.W.; Cai, M.H.; Yeh, J.W.: Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu05NiFe high-entropy alloy. Mater. Sci. Eng. A 457, 77–83 (2007)

    Article  Google Scholar 

  22. Hsu, C.Y.; Juan, C.C.; Wang, W.R.; Sheu, T.S.; Yeh, J.W.; Chen, S.K.: On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys. Mater. Sci. Eng. A 528, 3581–3588 (2011)

    Article  Google Scholar 

  23. Lin, C.M.; Tsai, H.L.: Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics 19, 288–294 (2011)

    Article  Google Scholar 

  24. Qiu, X.W.; Liu, C.G.: Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding. J. Alloy. Compd. 553, 216–220 (2013)

    Article  Google Scholar 

  25. Qiu, X.W.; Zhang, Y.P.; He, L.; Liu, C.G.: Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J. Alloy. Compd. 549, 195–199 (2013)

    Article  Google Scholar 

  26. Senkov, O.N.; Senkova, S.V.; Woodward, C.: Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214–228 (2014)

    Article  Google Scholar 

  27. Senkov, O.; Wilks, G.; Miracle, D.; Chuang, C.; Liaw, P.: Refractory high-entropy alloys. Intermetallics 18, 1758–1765 (2010)

    Article  Google Scholar 

  28. Juan, C.C.; Tsai, M.H.; Tsai, C.W.; Lin, C.M.; Wang, W.R.; Yang, C.C.; Chen, S.K.; Lin, S.J.; Yeh, J.W.: Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics 62, 76–83 (2015)

    Article  Google Scholar 

  29. Murty, B.; Yeh, J.W.; Ranganathan, S.: High-entropy alloys. Butterworth-Heinemann, Oxford (2014)

    Google Scholar 

  30. Wang, Z.; Guo, S.; Liu, C.T.: Phase selection in high-entropy alloys: from nonequilibrium to equilibrium. JOM 66, 1966–1972 (2014)

    Article  Google Scholar 

  31. Praveen, S.; Murty, B.S.; Kottada, R.S.: Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering. JOM 65, 1797–1804 (2013)

    Article  Google Scholar 

  32. Zhou, Y.: Material analysis methods. Mechanical Industry Press, Beijing (2004)

    Google Scholar 

  33. Wu, Z.; Bei, H.; Otto, F.; Pharr, G.M.; George, E.P.: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131–140 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research work is supported by the National Natural Science Foundation of China (51761002), the National Key R&D Program of China (2016YFB0301400), the Guangxi Natural Science Foundation (2018GXNSFDA050008), the Training Plan of High-Level Talents of Guangxi University (XMPZ160714) and the research project of Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials (GXYSSF1807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhong Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Ye, H. & Zhan, Y. Mechanism of FCC structure formation in NiCoFeCuMn equiatomic high-entropy alloys. Arab J Sci Eng 44, 6637–6644 (2019). https://doi.org/10.1007/s13369-019-03875-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03875-x

Keywords

Navigation