Skip to main content
Log in

Life Estimation and Investigation of Dielectric Strength and Siloxane Backbone of High Voltage Silicone Rubber Composites Under Accelerated Multistress Conditions

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Room-temperature-vulcanized silicone rubber (RTV-SiR) is an excellent polymer for the coatings of high voltage outdoor insulators. However, like other polymers it also degrades by environmental stresses and lessens its service life. Silica-based composites may improve this behavior. To investigate the effect of multiple environmental stresses such as acid rain, heat, UV radiations, salt fog, etc., on silica-based composites, we prepared a sample neat SiR, two SiR nano-composites (5% and 2.5% nano-silica loading), an SiR micro-composite (15% micro-silica loading) and a hybrid composites (2% nano \(+\) 10% micro-silica loading). The prepared samples are subjected to accelerated multistress environment for a long term. Dielectric strength, leakage current and siloxane backbone are analyzed periodically during entire aging period. Composites showed improved characteristics and service life. Silicone rubber nano-composite with 5% nano-silica loading (SNC-5) showed longest estimated service life of 29 lab years in comparison with 19.8 lab years of neat silicone rubber. Similarly, after aging 17 kV/mm of dielectric of SNC-5 was highest among the all samples. Siloxane backbone also showed improved intactness in the case of SNC-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’ko, Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9), 1624–1652 (2006)

    Article  Google Scholar 

  2. Balazs, A.C.; Emrick, T.; Russell, T.P.: Nanoparticle polymer composites: where two small worlds meet. Science 314(5802), 1107–1110 (2006)

    Article  Google Scholar 

  3. Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S.: Characterization and properties of natural fiber polymer composites: a comprehensive review. J. Clean. Prod. 172, 566–581 (2018)

    Article  Google Scholar 

  4. Kashfipour, M.A.; Mehra, N.; Zhu, J.: A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv. Compos. Hybrid Mater. 1(3), 415–439 (2018)

    Article  Google Scholar 

  5. Lyu, M.Y.; Choi, T.G.: Research trends in polymer materials for use in lightweight vehicles. Int. J. Precis. Eng. Manuf. 16(1), 213–220 (2015)

    Article  Google Scholar 

  6. Yan, L.; Chouw, N.; Jayaraman, K.: Effect of UV and water spraying on the mechanical properties of flax fabric reinforced polymer composites used for civil engineering applications. Mater. Des. 71, 17–25 (2015)

    Article  Google Scholar 

  7. Naebe, M.; Abolhasani, M.M.; Khayyam, H.; Amini, A.; Fox, B.: Crack damage in polymers and composites: a review. Polym. Rev. 56(1), 31–69 (2016)

    Article  Google Scholar 

  8. Barbero, E.J.: Introduction to Composite Materials Design. CRC Press, Boca Raton (2017)

    Google Scholar 

  9. Khan, Y.; Al-Arainy, A.A.; Malik, N.H.; Qureshi, M.I.; Al-Ammar, A.E.: Loss and recovery of hydrophobicity of EPDM insulators in simulated arid desert environment. In: Power and Energy Engineering Conference (APPEEC), 2010 Asia-Pacific, pp. 1–4. IEEE (2010)

  10. Vaillancourt, G.H.; Carignan, S.; Jean, C.: Experience with the detection of faulty composite insulators on high-voltage power lines by the electric field measurement method. IEEE Trans. Power Deliv. 13(2), 661–666 (1998)

    Article  Google Scholar 

  11. Heger, G.; Vermeulen, H.J.; Holtzhausen, J.P.; Vosloo, W.L.: A comparative study of insulator materials exposed to high voltage AC and DC surface discharges. IEEE Trans. Dielectr. Electr. Insul. 17(2), 513–520 (2010)

    Article  Google Scholar 

  12. Reddy, B.S.; Prasad, S.: Corona degradation of the polymer insulator samples under different fog conditions. IEEE Trans. Dielectr. Electr. Insul. 23(1), 359–367 (2016)

    Article  Google Scholar 

  13. Li, C.; Hu, J.; Lin, C.; Zhang, B.; Zhang, G.; He, J.: Surface charge migration and dc surface flashover of surface-modified epoxy-based insulators. J. Phys. D Appl. Phys. 50(6), 065301 (2017)

    Article  Google Scholar 

  14. Song, W.; Shen, W.W.; Zhang, G.J.; Song, B.P.; Lang, Y.; Su, G.Q.; Mu, H.B.; Deng, J.B.: Aging characterization of high temperature vulcanized silicone rubber housing material used for outdoor insulation. IEEE Trans. Dielectr. Electr. Insul. 22(2), 961–969 (2015)

    Article  Google Scholar 

  15. Kim, S.H.; Cherney, E.A.; Hackam, R.: The loss and recovery of hydrophobicity of RTV silicone rubber insulator coatings. IEEE Trans. Power Deliv. 5(3), 1491–1500 (1990)

    Article  Google Scholar 

  16. Cherney, E.A.: Silicone rubber dielectrics modified by inorganic fillers for outdoor high voltage insulation applications. IEEE Trans. Dielectr. Electr. Insul. 12(6), 1108–1115 (2005)

    Article  Google Scholar 

  17. Vlastos, A.E.; Sherif, E.: Experience from insulators with RTV silicon rubber sheds and shed coatings. IEEE Trans. Power Deliv. 5(4), 2030–2038 (1990)

    Article  Google Scholar 

  18. Sartika, N.; Putra, N.R.M.: The study on leakage current characteristics and electrical properties of uncoated ceramic, RTV silicon rubber coated ceramic, and semiconducting glazed outdoor insulators. Int. J. Electr. Eng. Inform. 10(2), 318–336 (2018)

    Article  Google Scholar 

  19. Xilin, W.; Han, W.; Xiaoran, X.; Zhidong, J.; Zhicheng, G.; Lin, Z.; Ruihai, L.: A new method to remove the aging RTV coatings on glass insulators. In: 2016 IEEE International Conference on Dielectrics (ICD), vol. 2, pp. 709–711. IEEE (2016)

  20. Manfred, W.; Siegfried, N.: U.S. Patent No. 2,999,077. U.S. Patent and Trademark Office, Washington, DC (1961)

  21. Grill, A.; Patel, V.V.; Gates, S.M.: U.S. Patent No. 6,479,110. U.S. Patent and Trademark Office, Washington, DC (2002)

  22. Braley, S.: The silicones as subdermal engineering materials. Ann. N. Y. Acad. Sci. 146(1), 148–157 (1968)

    Article  Google Scholar 

  23. Reynders, J.P.; Jandrell, I.R.; Reynders, S.M.: Review of aging and recovery of silicone rubber insulation for outdoor use. IEEE Trans. Dielectr. Electr. Insul. 6(5), 620–631 (1999)

    Article  Google Scholar 

  24. Meguriya, N.: U.S. Patent No. 6,552,096. U.S. Patent and Trademark Office, Washington, DC (2003)

  25. Nakamura, T., Hirabayashi, S.: U.S. Patent No. 5,582,885. U.S. Patent and Trademark Office, Washington, DC (1996)

  26. Shimizu, K.; Watanabe, T.; Hamada, M.: U.S. Patent No. 4,360,566. U.S. Patent and Trademark Office, Washington, DC (1982)

  27. Brown, J.B.; Fryer, M.P.; Randall, P.; Lu, M.: Silicones in plastic surgery: laboratory and clinical investigations, a preliminary report. Plast. Reconstr. Surg. 12(5), 374–376 (1953)

    Article  Google Scholar 

  28. Lothongkam, C.; Siebler, D.; Heidmann, G.; Plath, R.; Gockenbach, E.: The influence of thermal aging on AC dielectric strength of transparent silicone rubbers for HV insulation. In: Proceedings of 2014 International Symposium on Electrical Insulating Materials (ISEIM), pp. 346–349. IEEE (2014)

  29. Guo, Z.; Pereira, T.; Choi, O.; Wang, Y.; Hahn, H.T.: Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J. Mater. Chem. 16(27), 2800–8 (2006)

    Article  Google Scholar 

  30. Schmidt, D.; Shah, D.; Giannelis, E.P.: New advances in polymer/layered silicate nanocomposites. Curr. Opin. Solid State Mater. Sci. 6(3), 205–12 (2002)

    Article  Google Scholar 

  31. Zhao, H.; Li, R.K.: A study on the photo-degradation of zinc oxide (ZnO) filled polypropylene nanocomposites. Polymer 47(9), 3207–17 (2006)

    Article  Google Scholar 

  32. Xie, Q.; Niu, C.M.; Cheng, Y.H.: Preparation and electrical properties of titania nanowire-epoxy nanocomposites. In: Electrical Insulation Conference (EIC), IEEE 2015 June 7, pp. 450–453. IEEE (2015)

  33. Preetha, P.; Thomas, M.J.: Life estimation of electrothermally stressed epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 21(3), 1154–60 (2014)

    Article  Google Scholar 

  34. Pandey, J.C.; Gupta, N.: Thermal aging assessment of epoxy-based nanocomposites by space charge and conduction current measurements. In: Electrical Insulation Conference (EIC), 2014 June 8, pp. 59–63. IEEE (2014)

  35. Du, B.X.; Han, T.; Su, J.G.: Tree characteristics in silicone rubber/SiO\(_2\) nanocomposites under low temperature. IEEE Trans. Dielectr. Electr. Insul. 21(2), 503–510 (2014)

    Article  Google Scholar 

  36. Du, B.X.; Li, Z.L.: Surface charge and dc flashover characteristics of direct-fluorinated SiR/SiO\(_2\) nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 21(6), 2602–2610 (2014)

    Article  Google Scholar 

  37. Du, B.X.; Han, T.; Su, J.G.: Effect of low temperature on tree characteristics in silicone rubber with different power frequency. IEEE Trans. Dielectr. Electr. Insul. 21(4), 1880–1886 (2014)

    Article  Google Scholar 

  38. Dimitropoulou, M.; Pylarinos, D.; Siderakis, K.; Thalassinakis, E.; Danikas, M.: Comparative investigation of pollution accumulation and natural cleaning for different HV insulators. Eng. Technol. Appl. Sci. Res. 5(2), 764 (2015)

    Google Scholar 

  39. Ansorge, S.; Schmuck, F.; Papailiou, K.O.: Impact of different fillers and filler treatments on the erosion suppression mechanism of silicone rubber for use as outdoor insulation material. IEEE Trans. Dielectr. Electr. Insul. 22(2), 979–988 (2015)

    Article  Google Scholar 

  40. Liu, D.; Song, L.; Song, H.; Chen, J.; Tian, Q.; Chen, L.; Sun, L.; Lu, A.; Huang, C.; Sun, G.: Correlation between mechanical properties and microscopic structures of an optimized silica fraction in silicone rubber. Compos. Sci. Technol. 165, 373–379 (2018)

    Article  Google Scholar 

  41. Zhang, Y.; Zeng, X.; Lai, X.; Li, H.; Huang, X.: Significant improvement of urethane-containing silane on the tracking and erosion resistance of silicone rubber/silica nanocomposite by enhancing the interfacial effect. Polym. Test. 69, 16–25 (2018)

    Article  Google Scholar 

  42. Khattak, A.; Amin, M.: Accelerated aging investigation of high voltage EPDM/silica composite insulators. J. Polym. Eng. 36(2), 199–209 (2016)

    Article  Google Scholar 

  43. Khattak, A.; Iqbal, M.; Amin, M.: Aging analysis of high voltage silicone rubber/silica nanocomposites under accelerated weathering conditions. Sci. Eng. Compos. Mater. 24(5), 679–689 (2017)

    Article  Google Scholar 

  44. Amin, M.; Khattak, A.; Ali, M.: Life estimation and investigation of dielectric strength of multistressed high-voltage epoxy micro and nanocomposites. Micro Nano Lett. 11(11), 765–768 (2016)

    Article  Google Scholar 

  45. Khattak, A.; Amin, M.; Iqbal, M.: Long term accelerated aging investigation of an epoxy/silica nanocomposite for high voltage insulation. J. Polym. Eng. 38(3), 263–269 (2018)

    Article  Google Scholar 

  46. Khattak, A.; Amin, M.: Influence of stresses and fillers on the aging behaviour of polymeric insulators. Rev. Adv. Mater. Sci. 44, 194–205 (2016)

    Google Scholar 

  47. Khattak, A.; Amin, M.; Iqbal, M.; Abbas, N.: Life estimation and analysis of dielectric strength, hydrocarbon backbone and oxidation of high voltage multi stressed EPDM composites. Mater. Res. Express 5, 025003 (2018)

    Article  Google Scholar 

  48. ASTM D149-09: Standard test method for dielectric breakdown voltage and dielectric strength of solid electrical insulating materials at commercial power frequencies. ASTM International, West Conshohocken, PA (2013). www.astm.org

  49. IEC 60243-1:2013. Electric strength of insulating materials—test methods—part 1: tests at power frequencies

  50. Amin, M.; Amin, S.; Ali, M.: Monitoring of leakage current for composite insulators and electrical devices. Rev. Adv. Mater. Sci. 21, 75–89 (2009)

    Google Scholar 

  51. Mohammed, A.; Sundararajan, R.: Investigation of breakdown of an EPSB polymeric arrester based on the life estimation using a multiple regression model. In: Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2003, pp. 365–368. IEEE (2003)

  52. Venkatesulu, B.: Studies on polymeric micro/nanocomposites for outdoor high voltage insulation. Doctoral dissertation G23812 (2011)

  53. Ramirez, I.: A study of nanofilled silicone dielectrics for outdoor insulation. Doctoral dissertation, PhD thesis, University of Waterloo, Waterloo, Ontario, Canada (2009)

  54. Amin, M.; Ali, M.: Polymer nanocomposites for high voltage outdoor insulation applications. Rev. Adv. Mater. Sci. 40(3), 276–294 (2015)

    Google Scholar 

  55. Chang, B.P.; Akil, H.M.; Nasir, R.B.M.: Comparative study of micro-and nano-ZnO reinforced UHMWPE composites under dry sliding wear. Wear 297(1), 1120–1127 (2013)

    Article  Google Scholar 

  56. Momen, G.; Farzaneh, M.: Survey of micro/nano filler use to improve silicone rubber for outdoor insulators. Rev. Adv. Mater. Sci. 27(1), 1–13 (2011)

    Google Scholar 

  57. Nelson, J.K.; Hu, Y.: The impact of nanocomposite formulations on electrical voltage endurance. In: Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, 2004. ICSD 2004, vol. 2, pp. 832–835. IEEE (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattak, A., Amin, M., Khan, A. et al. Life Estimation and Investigation of Dielectric Strength and Siloxane Backbone of High Voltage Silicone Rubber Composites Under Accelerated Multistress Conditions. Arab J Sci Eng 44, 7149–7158 (2019). https://doi.org/10.1007/s13369-019-03839-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03839-1

Keywords

Navigation