Skip to main content

Advertisement

Log in

Understanding the Reaction Mechanism of Lithium–Sulfur Batteries by In Situ/Operando X-ray Absorption Spectroscopy

  • Review - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Because of the high theoretical energy density of \(2600\, \hbox {Wh kg}^{-1}\), lithium–sulfur (Li–S) batteries are regarded as one of the most promising energy storage technologies to meet the increasing requirement from personal devices to automobiles. However, the practical application of Li–S batteries is still challenging due to technical obstacles, such as low sulfur utilization and poor lifetime. Therefore, understanding the electrode reaction mechanism is of critical importance to further improve the battery performance and lifetime. Here, we review recent progress in the application of in situ and operando X-ray absorption spectroscopy in characterizing Li–S batteries. We discuss in detail how this advanced technique helps researchers understand the redox process of the electrode materials as well as the influence of polymer binder and electrolyte additive on the polysulfide shuttle effect, which provide valuable information for designing better Li–S batteries. A general conclusion and critical further research directions are also provided at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, K.: Electrolytes and interphases in Li–ion batteries and beyond. Chem. Rev. 114, 11503–618 (2014)

    Article  Google Scholar 

  2. Armand, M.; Tarascon, J.-M.: Building better batteries. Nature 451, 652–657 (2008)

    Article  Google Scholar 

  3. Li, M.; Lu, J.; Chen, Z.; Amine, K.: 30 years of lithium–ion batteries. Adv. Mater. 30, 1800561 (2018)

    Article  Google Scholar 

  4. Chu, S.; Cui, Y.; Liu, N.: The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016)

    Article  Google Scholar 

  5. Meng, J.; Guo, H.; Niu, C.; Zhao, Y.; Xu, L.; Li, Q.; Mai, L.: Advances in structure and property optimizations of battery electrode materials. Joule 1, 522 (2017)

    Article  Google Scholar 

  6. Lin, D.; Liu, Y.; Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017)

    Article  Google Scholar 

  7. Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G.: Li–ion battery materials: present and future. Mater. Today 18, 252–264 (2015)

    Article  Google Scholar 

  8. Yang, Y.; Zheng, G.; Cui, Y.: Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018–32 (2013)

    Article  Google Scholar 

  9. Seh, Z.W.; Sun, Y.; Zhang, Q.; Cui, Y.: Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016)

    Article  Google Scholar 

  10. Manthiram, A.; Fu, Y.; Chung, S.H.; Zu, C.; Su, Y.S.: Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–87 (2014)

    Article  Google Scholar 

  11. Pang, Q.; Liang, X.; Kwok, C.Y.; Nazar, L.F.: Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016)

    Article  Google Scholar 

  12. Fang, R.; Zhao, S.; Sun, Z.; Wang, D.W.; Cheng, H.M.; Li, F.: More reliable lithium–sulfur batteries: status solutions and prospects. Adv. Mater. 29, 1606823 (2017)

    Article  Google Scholar 

  13. Li, G.; Wang, S.; Zhang, Y.; Li, M.; Chen, Z.; Lu, J.: Revisiting the role of polysulfides in lithium–sulfur batteries. Adv. Mater. 30, 1705590 (2018)

    Article  Google Scholar 

  14. Rosenman, A.; Markevich, E.; Salitra, G.; Aurbach, D.; Garsuch, A.; Chesneau, F.F.: Review on Li–sulfur battery systems: an integral perspective. Adv. Energy Mater. 5, 1500212 (2015)

    Article  Google Scholar 

  15. Urbonaite, S.; Poux, T.; Novák, P.: Progress towards commercially viable Li–S battery cells. Adv. Energy Mater. 5, 1500118 (2015)

    Article  Google Scholar 

  16. Wang, H.; Adams, B.D.; Pan, H.; Zhang, L.; Han, K.S.; Estevez, L.; Lu, D.; Jia, H.; Feng, J.; Guo, J.; Zavadil, K.R.; Shao, Y.; Zhang, J.-G.: Tailored reaction route by micropore confinement for Li–S batteries operating under lean electrolyte conditions. Adv. Energy Mater. 8, 1800590 (2018)

    Article  Google Scholar 

  17. Ji, X.; Lee, K.T.; Nazar, L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–6 (2009)

    Article  Google Scholar 

  18. Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.M.: Li–O\(_{2}\) and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012)

    Article  Google Scholar 

  19. Zhao, E.; Nie, K.; Yu, X.; Hu, Y.-S.; Wang, F.; Xiao, J.; Li, H.; Huang, X.: Advanced characterization techniques in promoting mechanism understanding for lithium–sulfur batteries. Adv. Funct. Mater. 28, 1707543 (2018)

    Article  Google Scholar 

  20. Chen, L.; Shaw, L.L.: Recent advances in lithium–sulfur batteries. J. Power Sources 267, 770–783 (2014)

    Article  Google Scholar 

  21. Liu, Y.; He, P.; Zhou, H.: Rechargeable solid-state Li–air and Li–S batteries: materials, construction, and challenges. Adv. Energy Mater. 8, 1701602 (2018)

    Article  Google Scholar 

  22. Gorlin, Y.; Patel, M.U.M.; Freiberg, A.; He, Q.; Piana, M.; Tromp, M.; Gasteiger, H.A.: Understanding the charging mechanism of lithium–sulfur batteries using spatially resolved operando X-ray absorption spectroscopy. J. Electrochem. Soc. 163, A930–A939 (2016)

    Article  Google Scholar 

  23. Zhang, L.; Sun, D.; Feng, J.; Cairns, E.J.; Guo, J.: Revealing the electrochemical charging mechanism of nanosized Li\(_{2}\)S by in situ and operando X-ray absorption spectroscopy. Nano Lett. 17, 5084–5091 (2017)

    Article  Google Scholar 

  24. Gorlin, Y.; Siebel, A.; Piana, M.; Huthwelker, T.; Jha, H.; Monsch, G.; Kraus, F.; Gasteiger, H.A.; Tromp, M.: Operando characterization of intermediates produced in a lithium–sulfur battery. J. Electrochem. Soc. 162, A1146–A1155 (2015)

    Article  Google Scholar 

  25. Zhang, L.; Ling, M.; Feng, J.; Mai, L.; Liu, G.; Guo, J.: The synergetic interaction between LiNO\(_{3}\) and lithium polysulfides for suppressing shuttle effect of lithium–sulfur batteries. Energy Storage Mater. 11, 24 (2018)

    Article  Google Scholar 

  26. Zhu, W.; Paolella, A.; Kim, C.S.; Liu, D.; Feng, Z.; Gagnon, C.; Trottier, J.; Vijh, A.; Guerfi, A.; Mauger, A.; Julien, C.M.; Armand, M.; Zaghib, K.: Investigation of the reaction mechanism of lithium sulfur batteries in different electrolyte systems by in situ Raman spectroscopy and in situ X-ray diffraction. Sustain. Energy Fuels 1, 737–747 (2017)

    Article  Google Scholar 

  27. Saqib, N.; Ohlhausen, G.M.; Porter, J.M.: In operando infrared spectroscopy of lithium polysulfides using a novel spectro-electrochemical cell. J. Power Sources 364, 266–271 (2017)

    Article  Google Scholar 

  28. Sun, Y.; Seh, Z.W.; Li, W.; Yao, H.; Zheng, G.; Cui, Y.: In-operando optical imaging of temporal and spatial distribution of polysulfides in lithium–sulfur batteries. Nano Energy 11, 579–586 (2015)

    Article  Google Scholar 

  29. Patel, M.U.; Arcon, I.; Aquilanti, G.; Stievano, L.; Mali, G.; Dominko, R.: X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium–sulfur battery and its components. Chemphyschem 15, 894–904 (2014)

    Article  Google Scholar 

  30. Vizintin, A.; Chabanne, L.; Tchernychova, E.; Arčon, I.; Stievano, L.; Aquilanti, G.; Antonietti, M.; Fellinger, T.-P.; Dominko, R.: The mechanism of Li\(_{2}\)S activation in lithium–sulfur batteries: can we avoid the polysulfide formation? J. Power Sources 344, 208–217 (2017)

    Article  Google Scholar 

  31. Dominko, R.; Patel, M.U.M.; Lapornik, V.; Vizintin, A.; Koželj, M.; Tušar, N.N.; Arčon, I.; Stievano, L.; Aquilanti, G.: Analytical detection of polysulfides in the presence of adsorption additives by operando X-ray absorption spectroscopy. J. Phys. Cem. C 119, 19001–19010 (2015)

    Article  Google Scholar 

  32. Cuisinier, M.; Hart, C.; Balasubramanian, M.; Garsuch, A.; Nazar, L.F.: Radical or not radical: revisiting lithium–sulfur electrochemistry in nonaqueous electrolytes. Adv. Energy Mater. 5, 1401801 (2015)

    Article  Google Scholar 

  33. Cuisinier, M.; Cabelguen, P.-E.; Evers, S.; He, G.; Kolbeck, M.; Garsuch, A.; Bolin, T.; Balasubramanian, M.; Nazar, L.F.: Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy. J. Phys. Chem. Lett. 4, 3227–3232 (2013)

    Article  Google Scholar 

  34. Yu, X.; Pan, H.; Zhou, Y.; Northrup, P.; Xiao, J.; Bak, S.; Liu, M.; Nam, K.W.; Qu, D.; Liu, J.: Direct observation of the redistribution of sulfur and polysulfides in Li–S batteries during the first cycle by in situ X-ray fluorescence microscopy. Adv. Energy Mater. 5, 1500072 (2015)

    Article  Google Scholar 

  35. Waluś, S.; Barchasz, C.; Bouchet, R.; Leprêtre, J.-C.; Colin, J.-F.; Martin, J.-F.; Elkaïm, E.; Baehtz, C.; Alloin, F.: Lithium/sulfur batteries upon cycling: structural modifications and species quantification by in situ and operando X-ray diffraction spectroscopy. Adv. Energy Mater. 5, 1500165 (2015)

    Article  Google Scholar 

  36. Nelson, J.; Misra, S.; Yang, Y.; Jackson, A.; Liu, Y.; Wang, H.; Dai, H.; Andrews, J.C.; Cui, Y.; Toney, M.F.: In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J. Am. Chem. Soc. 134, 6337–43 (2012)

    Article  Google Scholar 

  37. Yang, Y.; Liu, X.; Dai, Z.; Yuan, F.; Bando, Y.; Golberg, D.; Wang, X.: In situ electrochemistry of rechargeable battery materials: status report and perspectives. Adv. Mater. 29, 1606922 (2017)

    Article  Google Scholar 

  38. Wolf, M.; May, B.M.; Cabana, J.: Visualization of electrochemical reactions in battery materials with X-ray microscopy and mapping. Chem. Mater. 29, 3347–3362 (2017)

    Article  Google Scholar 

  39. Lowe, M.A.; Gao, J.; Abruña, H.D.: Mechanistic insights into operational lithium–sulfur batteries by in situ X-ray diffraction and absorption spectroscopy. RSC Adv. 4, 18347 (2014)

    Article  Google Scholar 

  40. Kim, H.; Lee, J.T.; Magasinski, A.; Zhao, K.; Liu, Y.; Yushin, G.: In situ TEM observation of electrochemical lithiation of sulfur confined within inner cylindrical pores of carbon nanotubes. Adv. Energy Mater. 5, 1501306 (2015)

    Article  Google Scholar 

  41. Yang, Z.; Zhu, Z.; Ma, J.; Xiao, D.; Kui, X.; Yao, Y.; Yu, R.; Wei, X.; Gu, L.; Hu, Y.S.: Phase separation of Li\(_{2}\)S/S at nanoscale during electrochemical lithiation of the solid-state lithium–sulfur battery using in situ TEM. Adv. Energy Mater. 6, 1600806 (2016)

    Article  Google Scholar 

  42. Harks, P.P.R.M.L.; Mulder, F.M.; Notten, P.H.L.: In situ methods for Li–ion battery research: a review of recent developments. J. Power Sources 288, 92–105 (2015)

    Article  Google Scholar 

  43. Paolella, A.; Zhu, W.; Marceau, H.; Kim, C.-S.; Feng, Z.; Liu, D.; Gagnon, C.; Trottier, J.; Abdelbast, G.; Hovington, P.; Vijh, A.; Demopoulos, G.P.; Armand, M.; Zaghib, K.: Transient existence of crystalline lithium disulfide Li\(_{2}\)S\(_{2}\) in a lithium–sulfur battery. J. Power Sources 325, 641–645 (2016)

    Article  Google Scholar 

  44. Lin, F.; Liu, Y.; Yu, X.; Cheng, L.; Singer, A.; Shpyrko, O.G.; Xin, H.L.; Tamura, N.; Tian, C.; Weng, T.C.; Yang, X.Q.; Meng, Y.S.; Nordlund, D.; Yang, W.; Doeff, M.M.: Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem. Rev. 117, 13123 (2017)

    Article  Google Scholar 

  45. Guo, J.: Synchrotron radiation, soft-X-ray spectroscopy and nanomaterials. Int. J. Nanotechnol. 1, 193–225 (2004)

    Article  Google Scholar 

  46. Bak, S.-M.; Shadike, Z.; Lin, R.; Yu, X.; Yang, X.-Q.: In situ/operando synchrotron-based X-ray techniques for lithium–ion battery research. NPG Asia Mater. 10, 563–580 (2018)

    Article  Google Scholar 

  47. Li, Q.; Qiao, R.; Wray, L.A.; Chen, J.; Zhuo, Z.; Chen, Y.; Yan, S.; Pan, F.; Hussain, Z.; Yang, W.: Quantitative probe of the transition metal redox in battery electrodes through soft X-ray absorption spectroscopy. J Phys. D Appl. Phys. 49, 413003 (2016)

    Article  Google Scholar 

  48. Zhang, L.; Ji, L.; Glans, P.A.; Zhang, Y.; Zhu, J.; Guo, J.: Electronic structure and chemical bonding of a graphene oxide–sulfur nanocomposite for use in superior performance lithium–sulfur cells. Phys. Chem. Chem. Phys. 14, 13670–5 (2012)

    Article  Google Scholar 

  49. Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E.J.; Zhang, Y.: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 133, 18522–5 (2011)

    Article  Google Scholar 

  50. Wang, H.; Butorin, S.M.; Young, A.T.; Guo, J.: Nickel oxidation states and spin states of bioinorganic complexes from nickel L-edge X-ray absorption and resonant inelastic X-ray scattering. J. Phys. Cem. C 117, 24767–24772 (2013)

    Article  Google Scholar 

  51. Wujcik, K.H.; Wang, D.R.; Pascal, T.A.; Prendergast, D.; Balsara, N.P.: In situ X-ray absorption spectroscopy studies of discharge reactions in a thick cathode of a lithium sulfur battery. J. Electrochem. Soc. 164, A18–A27 (2017)

    Article  Google Scholar 

  52. Zhao, Q.; Zheng, J.; Archer, L.: Interphases in lithium–sulfur batteries: toward deployable devices with competitive energy density and stability. ACS Energy Lett. 3, 2104–2113 (2018)

    Article  Google Scholar 

  53. Ould Ely, T.; Kamzabek, D.; Chakraborty, D.; Doherty, M.F.: Lithium–sulfur batteries: state of the art and future directions. ACS Appl. Mater. Int. 1, 1783–1814 (2018)

    Google Scholar 

  54. Li, M.; Chen, Z.; Wu, T.; Lu, J.: Li\(_{2}\)S- or S-based lithium–ion batteries. Adv. Mater. 30, 1801190 (2018)

    Article  Google Scholar 

  55. Li, M.; Amirzadeh, Z.; De Marco, R.; Tan, X.F.; Whittaker, A.; Huang, X.; Wepf, R.; Knibbe, R.: In situ techniques for developing robust Li–S batteries. Small Methods 2, 1800133 (2018)

    Article  Google Scholar 

  56. Zou, Q.; Lu, Y.C.: Solvent-dictated lithium sulfur redox reactions: an operando UV–Vis spectroscopic study. J. Phys. Chem. Lett. 7, 1518–25 (2016)

    Article  Google Scholar 

  57. Vijayakumar, M.; Govind, N.; Walter, E.; Burton, S.D.; Shukla, A.; Devaraj, A.; Xiao, J.; Liu, J.; Wang, C.; Karim, A.; Thevuthasan, S.: Molecular structure and stability of dissolved lithium polysulfide species. Phys. Chem. Chem. Phys. 16, 10923–32 (2014)

    Article  Google Scholar 

  58. Barchasz, C.; Molton, F.; Duboc, C.; Lepretre, J.C.; Patoux, S.; Alloin, F.: Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal. Chem. 84, 3973–80 (2012)

    Article  Google Scholar 

  59. Sun, D.; Hwa, Y.; Shen, Y.; Huang, Y.; Cairns, E.J.: Li\(_{2}\)S nano spheres anchored to single-layered graphene as a high-performance cathode material for lithium/sulfur Cells. Nano Energy 26, 524–532 (2016)

    Article  Google Scholar 

  60. Nan, C.; Lin, Z.; Liao, H.; Song, M.K.; Li, Y.; Cairns, E.J.: Durable carbon-coated Li\(_{2}\)(S) core-shell spheres for high performance lithium/sulfur cells. J. Am. Chem. Soc. 136, 4659–63 (2014)

    Article  Google Scholar 

  61. Cai, K.; Song, M.K.; Cairns, E.J.; Zhang, Y.: Nanostructured Li\(_{(2)}\)S–C composites as cathode material for high-energy lithium/sulfur batteries. Nano Lett. 12, 6474–9 (2012)

    Article  Google Scholar 

  62. Zhou, G.; Tian, H.; Jin, Y.; Tao, X.; Liu, B.; Zhang, R.; Seh, Z.W.; Zhuo, D.; Liu, Y.; Sun, J.; Zhao, J.; Zu, C.; Wu, D.S.; Zhang, Q.; Cui, Y.: Catalytic oxidation of Li\(_{2}\)S on the surface of metal sulfides for Li–S batteries. Proc. Natl. Acad. Sci. 114, 840–845 (2017)

    Article  Google Scholar 

  63. Zhou, G.; Sun, J.; Jin, Y.; Chen, W.; Zu, C.; Zhang, R.; Qiu, Y.; Zhao, J.; Zhuo, D.; Liu, Y.; Tao, X.; Liu, W.; Yan, K.; Lee, H.R.; Cui, Y.: Sulfiphilic nickel phosphosulfide enabled Li\(_{2}\) S impregnation in 3D graphene cages for Li–S batteries. Adv. Mater. 29, 1603366 (2017)

    Article  Google Scholar 

  64. Wang, L.; Wang, Y.; Xia, Y.: A high performance lithium-ion sulfur battery based on a Li\(_{2}\)S cathode using a dual-phase electrolyte. Energy Environ. Sci. 8, 1551–1558 (2015)

    Article  Google Scholar 

  65. Yang, Y.; Zheng, G.; Misra, S.; Nelson, J.; Toney, M.F.; Cui, Y.: High-capacity micrometer-sized Li\(_{2}\)S particles as cathode materials for advanced rechargeable lithium–ion batteries. J. Am. Chem. Soc. 134, 15387–94 (2012)

    Article  Google Scholar 

  66. Hwa, Y.; Zhao, J.; Cairns, E.J.: Lithium sulfide (Li\(_{2}\)S)/graphene oxide nanospheres with conformal carbon coating as a high-rate, long-life cathode for Li/S cells. Nano Lett. 15, 3479–86 (2015)

    Article  Google Scholar 

  67. Qiu, Y.; Rong, G.; Yang, J.; Li, G.; Ma, S.; Wang, X.; Pan, Z.; Hou, Y.; Liu, M.; Ye, F.; Li, W.; Seh, Z.W.; Tao, X.; Yao, H.; Liu, N.; Zhang, R.; Zhou, G.; Wang, J.; Fan, S.; Cui, Y.; Zhang, Y.: Highly nitridated graphene-Li\(_{2}\)S cathodes with stable modulated cycles. Adv. Energy Mater. 5, 1501369 (2015)

    Article  Google Scholar 

  68. Son, Y.; Lee, J.-S.; Son, Y.; Jang, J.-H.; Cho, J.: Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater. 5, 1500110 (2015)

    Article  Google Scholar 

  69. Tan, G.; Xu, R.; Xing, Z.; Yuan, Y.; Lu, J.; Wen, J.; Liu, C.; Ma, L.; Zhan, C.; Liu, Q.; Wu, T.; Jian, Z.; Shahbazian-Yassar, R.; Ren, Y.; Miller, D.J.; Curtiss, L.A.; Ji, X.; Amine, K.: Burning lithium in CS\(_{2}\) for high-performing compact Li\(_{2}\)S-graphene nanocapsules for Li–S batteries. Nature Energy 2, 17090 (2017)

    Article  Google Scholar 

  70. Ai, G.; Dai, Y.; Mao, W.; Zhao, H.; Fu, Y.; Song, X.; En, Y.; Battaglia, V.S.; Srinivasan, V.; Liu, G.: Biomimetic ant-nest electrode structures for high sulfur ratio lithium–sulfur batteries. Nano Lett. 16, 5365–72 (2016)

    Article  Google Scholar 

  71. Ai, G.; Dai, Y.; Ye, Y.; Mao, W.; Wang, Z.; Zhao, H.; Chen, Y.; Zhu, J.; Fu, Y.; Battaglia, V.; Guo, J.; Srinivasan, V.; Liu, G.: Investigation of surface effects through the application of the functional binders in lithium sulfur batteries. Nano Energy 16, 28–37 (2015)

    Article  Google Scholar 

  72. Li, H.; Yang, X.; Wang, X.; Liu, M.; Ye, F.; Wang, J.; Qiu, Y.; Li, W.; Zhang, Y.: Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode. Nano Energy 12, 468–475 (2015)

    Article  Google Scholar 

  73. Wang, H.; Yang, Y.; Liang, Y.; Robinson, J.T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H.: Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–7 (2011)

    Article  Google Scholar 

  74. Song, J.; Gordin, M.L.; Xu, T.; Chen, S.; Yu, Z.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y.; Wang, D.: Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes. Angew. Chem. Int. Ed. 54, 4325–9 (2015)

    Article  Google Scholar 

  75. Li, W.; Zhang, Q.; Zheng, G.; Seh, Z.W.; Yao, H.; Cui, Y.: Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett. 13, 5534–40 (2013)

    Article  Google Scholar 

  76. Chen, W.; Qian, T.; Xiong, J.; Xu, N.; Liu, X.; Liu, J.; Zhou, J.; Shen, X.; Yang, T.; Chen, Y.; Yan, C.: A new type of multifunctional polar binder: toward practical application of high energy lithium sulfur batteries. Adv. Mater. 29, 1605160 (2017)

    Article  Google Scholar 

  77. Wang, J.; Yao, Z.; Monroe, C.W.; Yang, J.; Nuli, Y.: Carbonyl-\(\beta \)-cyclodextrin as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Adv. Funct. Mater. 23, 1194–1201 (2013)

    Article  Google Scholar 

  78. Milroy, C.; Manthiram, A.: An elastic, conductive, electroactive nanocomposite binder for flexible sulfur cathodes in lithium–sulfur batteries. Adv. Mater. 28, 9744–9751 (2016)

    Article  Google Scholar 

  79. Seh, Z.W.; Zhang, Q.; Li, W.; Zheng, G.; Yao, H.; Cui, Y.: Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chem. Sci. 4, 3673 (2013)

    Article  Google Scholar 

  80. Chen, C.Y.; Peng, H.J.; Hou, T.Z.; Zhai, P.Y.; Li, B.Q.; Tang, C.; Zhu, W.; Huang, J.Q.; Zhang, Q.: A quinonoid-imine-enriched nanostructured polymer mediator for lithium–sulfur batteries. Adv. Mater. 29, 1606802 (2017)

    Article  Google Scholar 

  81. Li, G.; Ling, M.; Ye, Y.; Li, Z.; Guo, J.; Yao, Y.; Zhu, J.; Lin, Z.; Zhang, S.: Acacia senegal-inspired bifunctional binder for longevity of lithium–sulfur batteries. Adv. Energy Mater. 5, 1500878 (2015)

    Article  Google Scholar 

  82. Ling, M.; Zhang, L.; Zheng, T.; Feng, J.; Guo, J.; Mai, L.; Liu, G.: Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery. Nano Energy 38, 82–90 (2017)

    Article  Google Scholar 

  83. Zhang, L.; Ling, M.; Feng, J.; Liu, G.; Guo, J.: Effective electrostatic confinement of polysulfides in lithium/sulfur batteries by a functional binder. Nano Energy 40, 559 (2017)

    Article  Google Scholar 

  84. Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Kelley, C.S.; Affinito, J.: On the surface chemical aspects of very high energy density rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694 (2009)

    Article  Google Scholar 

  85. Cheng, X.B.; Zhang, R.; Zhao, C.Z.; Wei, F.; Zhang, J.G.; Zhang, Q.: A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016)

    Article  Google Scholar 

  86. Zhang, S.S.; Read, J.A.: A new direction for the performance improvement of rechargeable lithium/sulfur batteries. J. Power Sources 200, 77–82 (2012)

    Article  Google Scholar 

  87. Liang, X.; Wen, Z.; Liu, Y.; Wu, M.; Jin, J.; Zhang, H.; Wu, X.: Improved cycling performances of lithium sulfur batteries with LiNO\(_{3}\)-modified electrolyte. J. Power Sources 196, 9839–9843 (2011)

    Article  Google Scholar 

  88. Zhang, S.S.: A new finding on the role of LiNO\(_{3}\) in lithium–sulfur battery. J. Power Sources 322, 99–105 (2016)

    Article  Google Scholar 

  89. Zhang, S.S.: Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO\(_{3}\)-contained electrolyte. J. Electrochem. Soc. 159, A920–A923 (2012)

    Article  Google Scholar 

  90. Zhang, S.S.: Role of LiNO\(_{3}\) in rechargeable lithium/sulfur battery. Electrochim. Acta 70, 344–348 (2012)

    Article  Google Scholar 

  91. Xiong, S.; Xie, K.; Diao, Y.; Hong, X.: Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries. J. Power Sources 246, 840–845 (2014)

    Article  Google Scholar 

  92. Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y.M.; Cui, Y.: The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nature Commun. 6, 7436 (2015)

    Article  Google Scholar 

  93. Xiong, S.; Xie, K.; Diao, Y.; Hong, X.: On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium–sulfur batteries. J. Power Sources 236, 181–187 (2013)

    Article  Google Scholar 

  94. Xiong, S.; Xie, K.; Diao, Y.; Hong, X.: Properties of surface film on lithium anode with LiNO\(_{3}\) as lithium salt in electrolyte solution for lithium–sulfur batteries. Electrochim. Acta 83, 78–86 (2012)

    Article  Google Scholar 

  95. Zhao, C.-Z.; Cheng, X.-B.; Zhang, R.; Peng, H.-J.; Huang, J.-Q.; Ran, R.; Huang, Z.-H.; Wei, F.; Zhang, Q.: Li\(_{2}\)S\(_{5}\)-based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Mater. 3, 77–84 (2016)

    Article  Google Scholar 

  96. Jozwiuk, A.; Berkes, B.B.; Weiß, T.; Sommer, H.; Janek, J.; Brezesinski, T.: The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries. Energy Environ. Sci. 9, 2603–2608 (2016)

    Article  Google Scholar 

  97. Yan, C.; Cheng, X.-B.; Zhao, C.-Z.; Huang, J.-Q.; Yang, S.-T.; Zhang, Q.: Lithium metal protection through in-situ formed solid electrolyte interphase in lithium–sulfur batteries: the role of polysulfides on lithium anode. J. Power Sources 327, 212–220 (2016)

    Article  Google Scholar 

  98. Eberhardt, W.: Synchrotron radiation: a continuing revolution in X-ray science-diffraction limited storage rings and beyond. J. Electron. Spectrosc. Relat. Phenom. 200, 31–39 (2015)

    Article  Google Scholar 

  99. Hettel, R.: DLSR design and plans: an international overview. J. Synchrotron Radiat. 21, 843–55 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The work at the Advanced Light Source of the Lawrence Berkeley National Laboratory was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the US Department of Energy, Office of Science, Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghua Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Guo, J. Understanding the Reaction Mechanism of Lithium–Sulfur Batteries by In Situ/Operando X-ray Absorption Spectroscopy. Arab J Sci Eng 44, 6217–6229 (2019). https://doi.org/10.1007/s13369-019-03808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03808-8

Keywords

Navigation