Skip to main content
Log in

Ternary Blended Chitosan/Chitin/\(\hbox {FE}_{3}\hbox {O}_{4}\) Nanosupport for Lipase Activation and Stabilization

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

To overcome the drawbacks and high costs of the synthetic route to produce pentyl valerate (PeVa), i.e., a fuel additive, the biotechnological route of utilizing Rhizomucor miehei lipase conjugated to magnetite carrier support (RML-CS/CH/MNPs) is proposed. The magnetized RML-CS/CH/MNPs were developed for enabling high yield production of PeVa at relatively short reaction time \((<\) 3 h), while facilitating easy removal of excess RML-CS/CH/MNPs. Efficacy of the developed RML-CS/CH/MNPs biocatalyst was assessed for relevant esterification factors, viz. time, enzyme loading, temperature, substrate molar ratio and stirring speed. The highest yield of PeVa (96%) was reached under an optimized condition (\(50\,^{\circ }\hbox {C}\), using valeric acid/pentanol molar ratio of 1:2, with a lipase loading of 1.5 mg/mL, incubation time of 3 h), thus indicating the RML was catalyzing at its fullest potential due to improved activity and stability after immobilization onto CS/CH/MNPs. RML-CS/CH/MNPs retained a 90% activity after 40 days of storage and leached an initial 3.5% of the lipase likely due to insufficient rinsing during preparation. Since the RML-CS/CH/MNPs was prepared without the use of acids, it appears to be a greener catalyst for the esterification production of PeVa and presumably for other types of commercially important esters, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schell, D.J.; Dowe, N.; Chapeaux, A.; Nelson, R.S.; Jennings, E.W.: Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass. Bioresour. Technol. 205, 153–158 (2016)

    Article  Google Scholar 

  2. Basheer, S.; Watanabe, Y.: Enzymatic conversion of acid oils to biodiesel. Lipid Technol. 28(1), 16–18 (2016)

    Article  Google Scholar 

  3. Pourzolfaghar, H.; Abnisa, F.; Daud, W.M.A.W.; Aroua, M.K.: A review of the enzymatic hydroesterification process for biodiesel production. Renew. Sustain. Energy Rev. 61, 245–257 (2016)

    Article  Google Scholar 

  4. Contino, F.; Dagaut, P.; Dayma, G.; Halter, F.; Foucher, F.; Mounaïm-Rousselle, C.: Combustion and emissions characteristics of valeric biofuels in a compression ignition engine. J. Energy Eng. 140(3), A4014013 (2013)

    Article  Google Scholar 

  5. Lange, J.P.; Price, R.; Ayoub, P.M.; Louis, J.; Petrus, L.; Clarke, L.; Gosselink, H.: Valeric biofuels: a platform of cellulosic transportation fuels. Angew. Chem. Int. Ed. 49(26), 4479–4483 (2010)

    Article  Google Scholar 

  6. Ju, I.B.; Lim, H.-W.; Jeon, W.; Suh, D.J.; Park, M.-J.; Suh, Y.-W.: Kinetic study of catalytic esterification of butyric acid and n-butanol over Dowex 50Wx8-400. Chem. Eng. J. 168(1), 293–302 (2011)

    Article  Google Scholar 

  7. Che Marzuki, N.H.; Mahat, N.A.; Huyop, F.; Buang, N.A.; Wahab, R.A.: Candida rugosa lipase immobilized onto acid-functionalized multi-walled carbon nanotubes for sustainable production of methyl oleate. Appl. Biochem. Biotechnol. 177(4), 967–984 (2015)

    Article  Google Scholar 

  8. Patil, K.J.; Chopda, M.Z.; Mahajan, R.T.: Lipase biodiversity. Indian J. Sci. Technol. 4(8), 971–982 (2011)

    Google Scholar 

  9. Zhou, Z.; Inayat, A.; Schwieger, W.; Hartmann, M.: Improved activity and stability of lipase immobilized in cage-like large pore mesoporous organosilicas. Microporous Mesoporous Mater. 154, 133–141 (2012)

    Article  Google Scholar 

  10. Miranda, J.S.; Silva, N.C.; Bassi, J.J.; Corradini, M.C.; Lage, F.A.; Hirata, D.B.; Mendes, A.A.: Immobilization of Thermomyces lanuginosus lipase on mesoporous poly-hydroxybutyrate particles and application in alkyl esters synthesis: Isotherm”, thermodynamic and mass transfer studies. Chem. Eng. J. 251, 392–403 (2014)

    Article  Google Scholar 

  11. Gofferjé, G.; Stäbler, A.; Herfellner, T.; Schweiggert-Weisz, U.; Flöter, E.: Kinetics of enzymatic esterification of glycerol and free fatty acids in crude jatropha oil by immobilized lipase from Rhizomucor miehei. J. Mol. Catal. B Enzym. 107, 1–7 (2014)

    Article  Google Scholar 

  12. Manan, F.M.A.; Rahman, I.N.A.; Marzuki, N.H.C.; Mahat, N.A.; Huyop, F.; Wahab, R.A.: Statistical modelling of eugenol benzoate synthesis using Rhizomucor miehei lipase reinforced nanobioconjugates. Process Biochem. 51(2), 249–262 (2016)

    Article  Google Scholar 

  13. Kharrat, N.; Ali, Y.B.; Marzouk, S.; Gargouri, Y.-T.; Karra-Châabouni, M.: Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: comparison with the free enzyme. Process Biochem. 46(5), 1083–1089 (2011)

    Article  Google Scholar 

  14. Solanki, P.R.; Kaushik, A.; Ansari, A.A.; Tiwari, A.; Malhotra, B.: Multi-walled carbon nanotubes/sol–gel-derived silica/chitosan nanobiocomposite for total cholesterol sensor. Sens. Actuators B Chem. 137(2), 727–735 (2009)

    Article  Google Scholar 

  15. Brady, L.; Brzozowski, A.M.; Derewenda, Z.S.; Dodson, E.; Dodson, G.; Tolley, S.; Turkenburg, J.P.; Christiansen, L.; Huge-Jensen, B.; Norskov, L.: A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343(6260), 767–770 (1990)

    Article  Google Scholar 

  16. Poojari, Y.; Clarson, S.J.: Thermal stability of Candida antarctica lipase B immobilized on macroporous acrylic resin particles in organic media. Biocatal. Agric. Biotechnol. 2(1), 7–11 (2013)

    Article  Google Scholar 

  17. Firdaus, M.Y.; Guo, Z.; Fedosov, S.N.: Development of kinetic model for biodiesel production using liquid lipase as a biocatalyst esterification step. Biochem. Eng. J. 105, 52–61 (2016)

    Article  Google Scholar 

  18. Manan, F.M.A.; Attan, N.; Zakaria, Z.; Keyon, A.S.A.; Wahab, R.A.: Enzymatic esterification of eugenol and benzoic acid by a novel chitosan–chitin nanowhiskers supported Rhizomucor miehei lipase: process optimization and kinetic assessments. Enzyme Microb. Technol. 10, 42–52 (2018)

    Article  Google Scholar 

  19. Rahman, I.N.A.; Attan, A.; Mahat, N.A.; Jamalis, J.; Keyon, A.S.A.; Kurniawan, C.; Wahab, R.A.: Statistical optimization and operational stability of Rhizomucor miehei lipase supported on magnetic chitosan/chitin nanoparticles for synthesis of pentyl valerate. Intl. J. Biol. Macromol. 115, 680–695 (2018)

    Article  Google Scholar 

  20. Pylypchuk, I.V.; Kołodyńska, D.; Kozioł, M.; Gorbyk, P.: Gd-DTPA adsorption on chitosan/magnetite nanocomposites. Nanoscale Res. Lett. 11(1), 1–10 (2016)

    Article  Google Scholar 

  21. Kulkarni, S.A.; Sawadh, P.; Palei, P.K.: Synthesis and characterization of superparamagnetic \(\text{ Fe }_{3}\text{ O }_{4}\)@ \(\text{ SiO }_{2}\) nanoparticles. J. Korean Chem. Soc. 58(1), 100–104 (2014)

    Article  Google Scholar 

  22. Onoja, E.; Chandren, S.; Razak, F.I.A.; Wahab, R.A.: Enzymatic synthesis of butyl butyrate by Candida rugosa lipase supported on magnetized-nanosilica from oil palm leaves: process optimization, kinetic and thermodynamic study. J. Taiwan Inst. Chem. Eng. 91, 105–118 (2018)

    Article  Google Scholar 

  23. Maity, D.; Agrawal, D.: Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J. Magn. Magn. Mater. 308(1), 46–55 (2007)

    Article  Google Scholar 

  24. Qin, Y.; Zhang, S.; Yu, J.; Yang, J.; Xiong, L.; Sun, Q.: Effects of chitin nanowhiskers on the antibacterial and physicochemical properties of maize starch films. Carbohydr. Polym. 147, 372–378 (2016)

    Article  Google Scholar 

  25. Kalkan, N.A.; Aksoy, S.; Aksoy, E.A.; Hasirci, N.: Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J. Appl. Polym. Sci. 123(2), 707–716 (2012)

    Article  Google Scholar 

  26. Kiran, K.; Krishna, S.H.; Babu, C.S.; Karanth, N.; Divakar, S.: An esterification method for determination of lipase activity. Biotechnol. Lett. 22(19), 1511–1514 (2000)

    Article  Google Scholar 

  27. Mendes, A.A.; Freitas, L.; de Carvalho, A.K.F.; de Oliveira, P.C.; de Castro, H.F.: Immobilization of a commercial lipase from Penicillium camembertii (Lipase G) by different strategies. Enzyme Res. (2011). https://doi.org/10.4061/2011/967239

  28. Kartal, F.; Janssen, M.H.; Hollmann, F.; Sheldon, R.A.; Kılınc, A.: Improved esterification activity of Candida rugosa lipase in organic solvent by immobilization as cross-linked enzyme aggregates (CLEAs). J. Mol. Catal. B Enzym. 71(3), 85–89 (2011)

    Article  Google Scholar 

  29. Dehnavi, S.M.; Pazuki, G.; Vossoughi, M.: PEGylated silica-enzyme nanoconjugates: a new frontier in large scale separation of \({\upalpha }\)-amylase. Sci. Rep. (2015). https://doi.org/10.1038/srep18221

  30. Abdul Rahman, M.B.; Chaibakhsh, N.; Basri, M.: Effect of alcohol structure on the optimum condition for Novozym 435-catalyzed synthesis of adipate esters. Biotechnol. Res. Int. (2011). https://doi.org/10.4061/2011/162987

  31. do Nascimento, L.A.S.; Tito, L.M.; Angélica, R.S.; Da Costa, C.E.; Zamian, J.R.; da Rocha Filho, G.N.: Esterification of oleic acid over solid acid catalysts prepared from Amazon Flint Kaolin. Appl. Catal. B. 101(3), 495–503 (2011)

    Article  Google Scholar 

  32. Bruno, L.M.; Lima,; Filho, J.L.D.; Castro, H.F.D.: Comparative performance of microbial lipases immobilized on magnetic polysiloxane polyvinyl alcohol particles. Braz. Arch. Biol. Technol. 51(5), 889–896 (2008)

    Article  Google Scholar 

  33. Li, X.; Li, X.; Ke, B.; Shi, X.; Du, Y.: Cooperative performance of chitin whisker and rectorite fillers on chitosan films. Carbohydr. Polym. 85(4), 747–752 (2011)

    Article  Google Scholar 

  34. Fardioui, M.; Mekhzoum, M.E.M.; Qaiss, A.K.; Bouhfid, R.: Bionanocomposite materials based on chitosan reinforced with nanocrystalline cellulose and organo-modified montmorillonite. In: Jawaid, M., Qaiss, A., Bouhfid, R. (eds.) Nanoclay Reinforced Polymer Composites, pp. 167–194. Springer, Singapore (2016)

    Chapter  Google Scholar 

  35. HPS, A.K.; Saurabh, C.K.; Adnan, A.; Fazita, M.N.; Syakir, M.; Davoudpour, Y.; Rafatullah, M.; Abdullah, C.; Haafiz, M.; Dungani, R.: A review on chitosan–cellulose blends and nanocellulose reinforced chitosan biocomposites: properties and their applications. Carbohydr. Polym. 150, 216–226 (2016)

    Article  Google Scholar 

  36. Honarmand, D.; Ghoreishi, S.M.; Habibi, N.; Nicknejad, E.T.: Controlled release of protein from magnetite–chitosan nanoparticles exposed to an alternating magnetic field. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.43335

  37. Tee, B.L.; Kaletunç, G.: Immobilization of a thermostable \({\upalpha }\)-amylase by covalent binding to an alginate matrix increases high temperature usability. Biotechnol. Prog. 25(2), 36–445 (2009)

    Article  Google Scholar 

  38. Mohamad, N.R.; Huyop, F.; Aboul-Enein, H.Y.; Mahat, N.A.; Wahab, R.A.: Response surface methodological approach for optimizing production of geranyl propionate catalysed by carbon nanotubes nanobioconjugates. Biotechnol. Biotechnol. Equip. 29(4), 732–739 (2015)

    Article  Google Scholar 

  39. Raghavendra, T.; Basak, A.; Manocha, L.M.; Shah, A.R.; Madamwar, D.: Robust nanobioconjugates of Candida antarctica lipase B-multiwalled carbon nanotubes: characterization and application for multiple usages in non-aqueous biocatalysis. Bioresour. Technol. 140, 103–110 (2013)

    Article  Google Scholar 

  40. Aghabarari, B.; Ghiaci, M.; Amini, S.G.; Rahimi, E.; Martinez-Huerta, M.: Esterification of fatty acids by new ionic liquids as acid catalysts. J. Taiwan Inst. Chem. Eng. 45(2), 431–435 (2014)

    Article  Google Scholar 

  41. Salazar-Leyva, J.A.; Lizardi-Mendoza, J.; Ramirez-Suarez, J.C.; Lugo-Sanchez, M.E.; Valenzuela-Soto, E.M.; Ezquerra-Brauer, J.M.; Castillo-Yañez, F.J.; Pacheco-Aguilar, R.: Catalytic and operational stability of acidic proteases from Monterey sardine (Sardinops sagax caerulea) immobilized on a partially deacetylated chitin support. J. Food Biochem. (2016). https://doi.org/10.1111/jfbc.12287

  42. Chaibakhsh, N.; Basri, M.; Rahman, M.B.A.; Adnani, A.; Salleh, A.B.: Lipase-catalyzed synthesis of ergosterol ester. Biocatal. Agric. Biotechnol. 1(1), 51–56 (2012)

    Article  Google Scholar 

  43. Isah, A.A.; Mahat, N.A.; Jamalis, J.; Attan, N.; Zakaria, I.I.; Huyop, F.; Wahab, R.A.: Synthesis of geranyl propionate in a solvent-free medium using Rhizomucor miehei lipase covalently immobilized on chitosan–graphene oxide beads. Prep. Biochem. Biotechnol. 47(2), 199–210 (2017)

    Article  Google Scholar 

  44. Abdul Manan, F.M.; Attan, N.; Widodo, N.; Aboul-Enein, H.Y.; Wahab, R.A.: Rhizomucor miehei lipase immobilized on reinforced chitosan–chitin nanowhiskers support for synthesis of eugenyl benzoate. Prep. Biochem. Biotechnol. 48(1), 92–102 (2018)

    Article  Google Scholar 

  45. Wahab, R.A.; Basri, M.; Rahman, M.B.A.; Rahman, R.N.Z.R.A.; Salleh, A.B.; Leow, T.C.: Combination of oxyanion Gln114 mutation and medium engineering to influence the enantioselectivity of thermophilic lipase from Geobacillus zalihae. Intl. J. Mol. Sci. 13(9), 11666–11680 (2012)

    Article  Google Scholar 

  46. Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R.: Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40(6), 1451–1463 (2007)

    Article  Google Scholar 

  47. Mohamad, N.; Buang, N.A.; Mahat, N.A.; Jamalis, J.; Huyop, F.; Aboul-Enein, H.Y.; Wahab, R.A.: Simple adsorption of Candida rugosa lipase onto multi-walled carbon nanotubes for sustainable production of the flavor ester geranyl propionate. J. Ind. Eng. Chem. 32, 99–108 (2015)

    Article  Google Scholar 

  48. Che Marzuki, N.H.; Mahat, N.A.; Huyop, F.; Aboul-Enein, H.Y.; Wahab, R.A.: Sustainable production of the emulsifier methyl oleate by Candida rugosa lipase nanoconjugates. Food Bioprod. Process. 96, 211–220 (2015a)

    Article  Google Scholar 

  49. Marzuki, N.H.C.; Huyop, F.; Aboul-Enein, H.Y.; Mahat, N.A.; Wahab, R.A.: Modelling and optimization of Candida rugosa nanobioconjugates catalysed synthesis of methyl oleate by response surface methodology. Biotechnol. Biotechnol. Equip. 29(6), 1113–1127 (2015b)

    Article  Google Scholar 

  50. Onoja, E.; Chandren, S.; Abdul Razak, F.I.; Wahab, R.A.: Extraction of nanosilica from oil palm leaves and its application as support for lipase immobilization. J. Biotechnol. (2018). https://doi.org/10.1016/j.jbiotec.2018.07.036

  51. Veríssimo, L.A.A.; Soares, W.C.L.; Mol, P.C.G.; Minim, V.P.R.; da Silva, M.F.C.H.; Minim, L.A.: Optimization of flavor ester synthesis catalysed by Aspergillus niger lipase. Afr. J. Microbiol. Res. 9(13), 922–928 (2015)

    Article  Google Scholar 

  52. Srivastava, S.; Modak, J.; Madras, G.: Enzymatic synthesis of flavors in supercritical carbon dioxide. Ind. Eng. Chem. Res. 41(8), 1940–1945 (2002)

    Article  Google Scholar 

  53. Bansode, S.R.; Hardikar, M.A.; Rathod, V.K.: Evaluation of reaction parameters and kinetic modelling for Novozym 435 catalysed synthesis of isoamyl butyrate. J. Chem. Technol. Biotechnol. (2016). https://doi.org/10.1002/jctb.5125

  54. Foresti, M.; Alimenti, G.; Ferreira, M.: Interfacial activation and bioimprinting of Candida rugosa lipase immobilized on polypropylene: effect on the enzymatic activity in solvent-free ethyl oleate synthesis. Enzyme Microb. Technol. 36(2), 338–349 (2005)

    Article  Google Scholar 

  55. Yadav, G.D.; Yadav, A.R.: Insight into esterification of eugenol to eugenol benzoate using a solid super acidic modified zirconia catalyst UDCaT-5. Chem. Eng. J. 192, 146–155 (2012)

    Article  Google Scholar 

  56. Onoja, E.; Chandren, S.; Abdul Razak, F.I.; Wahab R.A.: Enzymatic synthesis of butyl butyrate by Candida rugosa lipase supported on magnetized-nanosilica from oil palm leaves: Process optimization, kinetic and thermodynamic study. J. Taiwan Inst. Chem. Eng. (2018). https://doi.org/10.1016/j.jtice.2018.05.049

  57. Gryglewicz, S.; Jadownicka, E.; Czerniak, A.: Lipase catalysed synthesis of aliphatic, terpene and aromatic esters by alcoholysis in solvent-free medium. Biotechnol. Lett. 22(17), 1379–1382 (2000)

    Article  Google Scholar 

  58. Yi, S.; Dai, F.; Zhao, C.; Si, Y.: A reverse micelle strategy for fabricating magnetic lipase-immobilized nanoparticles with robust enzymatic activity. Sci. Rep. 7(1), 9806 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the Faculty of Science, Universiti Teknologi Malaysia, for providing logistic supports. This work was funded by the Research University Grant Scheme (Q.J130000.2526.13H09) awarded by Universiti Teknologi Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roswanira Abdul Wahab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, I.N.A., Wahab, R.A., Mahat, N.A. et al. Ternary Blended Chitosan/Chitin/\(\hbox {FE}_{3}\hbox {O}_{4}\) Nanosupport for Lipase Activation and Stabilization. Arab J Sci Eng 44, 6327–6337 (2019). https://doi.org/10.1007/s13369-019-03771-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03771-4

Keywords

Navigation