Skip to main content

Bionanocomposite Materials Based on Chitosan Reinforced with Nanocrystalline Cellulose and Organo-Modified Montmorillonite

  • Chapter
  • First Online:
Nanoclay Reinforced Polymer Composites

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Recently, the research of materials based on bio-renewable and biodegradable polymers has been intensively increased since they are more friendly to the environment than the conventionally used petroleum-based polymers. Chitosan is globally the second most ubiquitous renewable natural polymer following cellulose. Chitosan is a biocompatible and biodegradable polymer characterized by unique structural, chemical, and biological properties. In the aim to obtain chitosan with ultimate properties, different nanofillers reinforcements were incorporated. The presences of nanosized filler result in very promising materials since they exhibit enhanced properties with preservation of the material biodegradability without eco-toxicity. Nowadays, chitosan bionanocomposites represent a class of materials that has attracted considerable attention especially in biomedical field thinks to their inherent properties such as nontoxicity, biodegradability as well as their improved structural and functional properties. This chapter highlights the recent advances in the development of chitosan bionanocomposite films. Preparative techniques, characterization and property improvements, these novel materials are discussed. A comparative study of chitosan-based bionanocomposite films prepared by incorporation with nanocrystalline cellulose (NCC), an organo-modified montmorillonite. The chemical and physical properties of the obtained bio-hybrid films with different concentration in terms of NCC and OMMT were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta, N., Jiménez, C., Borau, V., Heras, A.: Extraction and Characterization of Chitin from Crustaceans. Biomass and Bioenergy 5(2), 145–153 (1993)

    Google Scholar 

  • Ahmadi, S.J., Huang, Y.D., Li, W.: Synthetic routes, properties and future applications of polymer-layered silicate nanocomposites. J. Mater. Sci. 39(6), 1919–1925 (2004)

    Article  Google Scholar 

  • Alboofetileh, M., Rezaei, M., Hosseini, H., Abdollahi, M.: Effect of montmorillonite clay and biopolymer concentration on the physical and mechanical properties of alginate nanocomposite films. J. Food Eng. 117(1), 26–33 (2013)

    Article  Google Scholar 

  • Azeredo, H., Mattoso, L., Avena-Bustillos, R., Filho, G., Munford, M., Wood, D., McHugh, T.: Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J. Food Sci. 75(1) (2010)

    Google Scholar 

  • Azizi, M.A.S., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2), 612–626 (2005)

    Google Scholar 

  • Basheer, M.C., Alex, S., George Thomas, K., Suresh, C.H., Das, S.: A squaraine-based chemosensor for Hg2+ and Pb2+. Tetrahedron 62(4), 605–610 (2006)

    Google Scholar 

  • Bordes, P., Pollet, E., Avérous, L.: Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog. Polym. Sci. 34(2), 125–155 (2009)

    Article  Google Scholar 

  • Bottino, F.A., Fabbri, E., Fragalà, I., Malandrino, G., Orestano, A., Pilatiand, F., Pollicino, A.: Polystyrene-clay nanocomposites prepared with polymerizable imidazolium surfactants. Macromol. Rapid Commun. 24(18), 1079–1084 (2003)

    Google Scholar 

  • Brown, C.D., Kreilgaard, L., Nakakura, M., Caram-lelham, N., Dean, K., Gombotz, W., Hoffman, A.: Release of PEGylated granulocyte-macrophage colony-stimulating factor from chitosan/glycerol films. J. Control. Release 72, 35–46 (2001)

    Google Scholar 

  • Casimiro, M.H., Gil, M.H., Leal, J.P.: Suitability of gamma irradiated chitosan based membranes as matrix in drug release system. Int. J. Pharm. 395(1–2), 142–146 (2010)

    Article  Google Scholar 

  • Chen, F., Shi, Z., Neoh, K.G., Kang, E.T.: Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. Biotechnol. Bioeng. 104(1), 30–39 (2009)

    Google Scholar 

  • Chen, Y.-S., Li, C., Zeng, Z., Wang, W., Wang, X., Zhang, B.: Efficient electron injection due to a special adsorbing groups combination of carboxyl and hydroxyl: dye-sensitized solar cells based on new hemicyanine dyes. J. Mater. Chem. 15(16), 1654 (2005)

    Google Scholar 

  • Chen, X., Wang, W., Song, Z., Wang, J.: Chitosan/carbon nanotube composites for the isolation of hemoglobin in the presence of abundant proteins. Anal. Methods 3(8), 1769 (2011)

    Article  Google Scholar 

  • Chigwada, G., Wang, D., Wilkie, C.A.: Polystyrene nanocomposites based on quinolinium and pyridinium surfactants. Polym. Degrad. Stab. 91(4), 848–555 (2006)

    Google Scholar 

  • Christopher, L.P., Yao, B., Ji, Y.: Lignin biodegradation with laccase-mediator systems. Front. Energy Res. 2 (March), 1–13 (2014)

    Google Scholar 

  • Cieśla, K., Salmieri, S., Lacroix, M.: Gamma-irradiation influence on the structure and properties of calcium caseinate-whey protein isolate based films. Part 2. Influence of polysaccharide addition and radiation treatment on the structure and functional properties of the films. J. Agric. Food Chem. 54(23), 8899–8908 (2006)

    Article  Google Scholar 

  • Costache, M.C., Heidecker, M.J., Manias, E., Gupta, R.K., Wilkie, C.A.: Benzimidazolium surfactants for modification of clays for use with styrenic polymers. Polym. Degrad. Stab. 92(10), 1753–1762 (2007)

    Google Scholar 

  • Darder, M., Colilla, M., Ruiz-Hitzky, E.: Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chem. Mater. 15(20), 3774–3780 (2003)

    Article  Google Scholar 

  • Das, S., Thomas, K.G., Ramanathan, R., George, M.V.: Photochemistry of squaraine dyes. 6. solvent hydrogen bonding effects on the photophysical properties of bis(benzothiazoly1idene)squaraines. 8: 13625–13628 (1993)

    Google Scholar 

  • de Moura, M.R., Aouada, F.A., Avena-Bustillos, R.J., McHugh, T.H., Krochta, J.M., Mattoso, L.H.C.: Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J. Food Eng. 92(4), 448–453 (2009)

    Google Scholar 

  • Depan, D., Pratheep Kumar, A., Singh, R.P.: Bone tissue engineering with novel rhBMP2-PLLA composite scaffolds. J. Biomed. Mater. Res. Part A 81(4), 771–780 (2007)

    Google Scholar 

  • Depan, D., Kumar, A.P., Singh, R.P.: Cell proliferation and controlled drug release studies of nanohybrids based on chitosan-g-lactic acid and montmorillonite. Acta Biomater. 5(1), 93–100 (2009)

    Article  Google Scholar 

  • Dias, M.V., Thomas, K.G., Ramanathan, R., George, M.V.: Use of allyl isothiocyanate and carbon nanotubes in an antimicrobial film to package shredded, cooked chicken meat. Food Chem. 141(3), 3160–3166 (2013)

    Google Scholar 

  • do Nascimento, G.M., Constantino, V.R.L., Temperini, M.L.A.: Spectroscopic characterization of doped poly(benzidine) and its nanocomposite with cationic clay. J. Phys. Chem. B 108(18), 5564–5571 (2004)

    Google Scholar 

  • Dutta, P.K., Duta, J., Tripathi, V.S.: Chitin and chitosan: chemistry, properties and applications. J. Sci. Ind. Res. 63(1), 20–31 (2004)

    Google Scholar 

  • El Achaby, M., Ennajih, H., Arrakhiz, F.Z., El Kadib, A., Bouhfid, R., Essassi, E., Qaiss, A.: Modification of montmorillonite by novel geminal benzimidazolium surfactant and its use for the preparation of polymer organoclay nanocomposites. Compos. B Eng. 51, 310–317 (2013)

    Google Scholar 

  • Escamilla-Treviño, L.L.: Potential of plants from the genus Agave as bioenergy crops. BioEnergy Res. 5(1), 1–9 (2011)

    Article  Google Scholar 

  • Fedorova, O.A., Fedorov, Y., Vedernikov, A., Gromov, S., Yescheulova, O., Alfimov, M.: Thiacrown ether substituted styryl dyes: synthesis, complex formation and multiphotochromic properties. J. Phys. Chem. A 106(25): 6213–6222 (2002)

    Google Scholar 

  • Fernandes, S.C.M., et al.: Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr. Polym. 81(2), 394–401 (2010)

    Article  Google Scholar 

  • Festucci-buselli, R.A., Otoni, W.C., Joshi, C.P.: Structure, organization, and functions of cellulose synthase complexes in higher plants. 19(1), 1–13 (2007)

    Google Scholar 

  • Giannelis, E.P.: Polymer-layered silicate nanocomposites: synthesis, properties and applications. Appl. Organomet. Chem. 12, 675–680 (1998)

    Article  Google Scholar 

  • Habibi, Y., Lucia, L.A., Rojas, O.J.: Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010)

    Google Scholar 

  • Hua, S., Yang, H., Wang, W., Wang, A.: Controlled release of ofloxacin from chitosan-montmorillonite hydrogel. Appl. Clay Sci. 50(1), 112–117 (2010)

    Article  Google Scholar 

  • Hussain, F.: Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J. Compos. Mater. 40(17), 1511–1575 (2006)

    Article  Google Scholar 

  • Jo, C., Lee, J.W., Lee, K.H., Byun, M.W.: Quality properties of pork sausage prepared with water-soluble chitosan oligomer. Meat Sci. 59(4), 369–375 (2001)

    Article  Google Scholar 

  • Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Avérous, L., Njuguna, J., Nassiopoulos, E.: Cellulose-based bio- and nanocomposites: a review. Int. J. Polym. Sci. 2011, 1–35 (2011)

    Google Scholar 

  • Kamal, M.R., Lacroix, M.: Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films (2015)

    Google Scholar 

  • Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S.Y., Sheltami, R.M.: Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3), 855–866 (2012)

    Google Scholar 

  • Khan, A., Khan, R.A., Salmieri, S., Le Tien, C., Riedl, B., Bouchard, J., Chauve, G., Tan, V., Kamal, M.R., Lacroix, M.: Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr. Polym. 90(4), 1601–1608 (2012)

    Google Scholar 

  • Kim, N.H., Malhotra, S.V., Xanthos, M.: Modification of cationic nanoclays with ionic liquids. Microporous Mesoporous Mater. 96(1–3), 29–35 (2006)

    Article  Google Scholar 

  • Kim, K.W., Min, B.J., Kim, Y.-T., Kimmel, R.M., Cooksey, K., Park, S.I.: Antimicrobial activity against foodborne pathogens of chitosan biopolymer films of different molecular weights. LWT—Food Sci. Technol. 44(2), 565–569 (2011)

    Google Scholar 

  • Klemm, D., Schumann, D., Kramer, F., Heßler, N., Koth, D., Sultanova, B.: Nanocellulose materials—Different cellulose, different functionality. Macromol. Symp. 280(1), 60–71 (2009)

    Google Scholar 

  • Kojima, K., Yoshikuni, M.: Tributylborane-initiated grafting of methyl methacrylate onto chitin. 24: 1587–1593 (1979)

    Google Scholar 

  • Kolhe, P., Kannan, R.M.: Improvement in ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interactions. Biomacromolecules 4(1), 173–180 (2003)

    Article  Google Scholar 

  • Kumar, A., Negi, Y.S., Choudhary, V., Bhardwaj, N.K.: Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. 2(1), 1–8 (2014)

    Google Scholar 

  • Lagaly, G., Ziesmer, S.: Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions. Adv. Colloid Interface Sci. 100–102(SUPPL.), 105–128 (2003)

    Google Scholar 

  • Le Normand, M., Moriana, R., Ek, M.: Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohydr. Polym. 111, 979–987 (2014)

    Article  Google Scholar 

  • Le Tien, C., Letendre, M., Ispas-Szabo, P., Mateescu, M.A., Delmas-Patterson, G., Yu, H.L., Lacroix, M.: Development of biodegradable films from whey proteins by cross-linking and entrapment in cellulose. J. Agric. Food Chem. 48(11), 5566–5575 (2000)

    Google Scholar 

  • Li, L.-H., et al.: Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chem. Eng. J. 160(1), 378–382 (2010)

    Article  Google Scholar 

  • Liu, G., Zhang, L., Zhao, D., Qu, X.: Bulk polymerization of styrene in the presence of organomodified montmorillonite. J. Appl. Polym. Sci. 96(4), 1146–1152 (2005)

    Article  Google Scholar 

  • Ludueña, L.N., Alvarez, V.A., Vazquez, A.: Processing and Microstructure of PCL/clay Nanocomposites. Mater. Sci. Eng. A 460–461: 121–129 (2007)

    Google Scholar 

  • Madihally, S.V., Matthew, H.W.T.: Porous chitosan scaffolds for tissue engineering. 20: 1133–1142 (1999). (November 1998)

    Google Scholar 

  • Müller, C.M.O., Yamashita, F., Laurindo, J.B.: Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydr. Polym. 72(1), 82–87 (2008)

    Article  Google Scholar 

  • No, H.K., Meyers, S.P., Prinyawiwatkul, W., Xu, Z.: Applications of Chitosan for Improvement of Quality and Shelf Life of Foods: A Review. J. Food Sci. 72(5) (2007)

    Google Scholar 

  • Othman, S.H.: Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric. Agric. Sci. Procedia 2, 296–303 (2014)

    Article  Google Scholar 

  • Pal, A., Esumi, K.: Photochemical synthesis of biopolymer coated Aucore–Agshell type bimetallic nanoparticles. J. Nanosci. Nanotechnol. 7(6), 2110–2115 (2007)

    Google Scholar 

  • Pardal, A.C., Ramos, S.S., Santos, P.F., Reis, L.V., Almeida, P.: Synthesis and spectroscopic characterisation of n-Alkyl quaternary ammonium salts typical precursors of cyanines. Molecules 7(3), 320–330 (2002)

    Google Scholar 

  • Park, W.I., Kang, M., Kim, H.S., Jin, H.J.: Electrospinning of poly(ethylene oxide) with bacterial cellulose whiskers. Macromol. Symp. 249–250, 289–294 (2007)

    Article  Google Scholar 

  • Pei, H.N., Chen, X.G., Li, Y., Zhou, H.Y.: Characterization and ornidazole release in vitro of a novel composite film prepared with chitosan/poly(vinyl alcohol)/alginate. J. Biomed. Mater. Res. Part A 85(2), 566–572 (2008)

    Article  Google Scholar 

  • Penttilä, P.A., Várnai, A., Pere, J., Tammelin, T., Salmén, L., Siika-aho, M., Viikari, L., Serimaa, R: Xylan as limiting factor in enzymatic hydrolysis of nanocellulose. Bioresour. Technol. 129: 135–141 (2013)

    Google Scholar 

  • Rabea, E.I., et al.: Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6), 1457–1465 (2003)

    Article  Google Scholar 

  • Rafieian, F., Simonsen, J.: The effect of carboxylated nanocrystalline cellulose on the mechanical, thermal and barrier properties of cysteine cross-linked gliadin nanocomposite. Cellulose 22(2), 1175–1188 (2015)

    Article  Google Scholar 

  • Ramos, L.P.: The chemistry involved in the steam treatment of lignocellulosic materials. Quim. Nova 26(6), 863–871 (2003)

    Article  Google Scholar 

  • Ramsay, J.D.F., Swanton, S.W., Bunce, J.: Swelling and dispersion of smectite clay colloids: determination of structure. J. Chem. Soc. Faraday Trans. 86(23), 3919–3926 (1990)

    Article  Google Scholar 

  • Rao, M.S., Kanatt, S.R., Chawla, S.P., Sharma, A.: Chitosan and guar gum composite films: preparation, physical, mechanical and antimicrobial properties. Carbohydr. Polym. 82(4), 1243–1247 (2010)

    Google Scholar 

  • Rinaudo, M.: Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31(7), 603–632 (2006)

    Article  Google Scholar 

  • Rosli, N.A., Ahmad, I., Abdullah, I.: Solation and characterization of cellulose nanocrystals from agave angustifolia fibre. J. Bioresour. 8: 1893–1908 (2013)

    Google Scholar 

  • Salmieri, S., Lacroix, M.: Physicochemical properties of alginate/polycaprolactone-based films containing essential oils. J. Agric. Food Chem. 54(26), 10205–10214 (2006)

    Article  Google Scholar 

  • Sánchez-González, L., González-Martínez, C., Chiralt, A., Cháfer, M.: Physical and antimicrobial properties of chitosan-tea tree essential oil composite films. J. Food Eng. 98(4), 443–452 (2010)

    Article  Google Scholar 

  • Santulli, C., Sarasini, F., Fortunati, E., Puglia, D., Kenny, J.M. and Contents. . Okra fibres as potential reinforcement in biocomposites. In: Hakeem, K.R., Jawaid, M., Rashid, U.(eds.) Biomass and Bioenergy Processing and Properties, pp. 176–187. Springer International Publishing, Cham (2014)

    Google Scholar 

  • Shen, Y.H.: Preparations of organobentonite using nonionic surfactants. Chemosphere 44(5), 989–995 (2001)

    Article  Google Scholar 

  • Shinoda, R., Saito, T., Okita, Y., Isogai, A.: Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13(3), 842–849 (2012)

    Article  Google Scholar 

  • Silvestre, C., Duraccio, D., Cimmino, S.: Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 36(12), 1766–1782 (2011)

    Article  Google Scholar 

  • Singha, A.S., Thakur, V.K.: Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int. J. Polym. Anal. Charact. 15(2), 87–97 (2010)

    Google Scholar 

  • Siracusa, V., Rocculi, P., Romani, S., Rosa, M.D.: Biodegradable polymers for food packaging: a review. Trends Food Sci. Technol. 19(12), 634–643 (2008)

    Article  Google Scholar 

  • Siripatrawan, U., Harte, B.R.: Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll. 24(8), 770–775 (2010)

    Article  Google Scholar 

  • Sorrentino, A., Gorrasi, G., Vittoria, V.: Potential Perspectives of Bio-Nanocomposites for Food Packaging Applications. Trends Food Sci. Technol. 18(2), 84–95 (2007)

    Article  Google Scholar 

  • Srinivasa, P.C., Tharanathan, R.N.: Chitin/chitosan—Safe, ecofriendly packaging materials with multiple potential uses. Food Rev. Int. 23(1), 53–72 (2007)

    Article  Google Scholar 

  • Suyatma, N.E., Tighzert, L., Copinet, A., Coma, V.: Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. J. Agric. Food Chem. 53(10), 3950–3957 (2005)

    Google Scholar 

  • Tanoue, S., Utracki, L.A., Garcia-Rejon, A., Sammut, P., Ton-That, M.-T., Pesneau, I., Kamal, M.R., Lyngaae-Jørgensen, J.: Melt compounding of different grades of polystyrene with organoclay. part 1: compounding and characterization. Polym. Eng. Sci. 44: 1046–1060 (2004)

    Google Scholar 

  • Tatay, S., Gaviña, P., Coronado, E., Palomares, E.: Optical mercury sensing using a benzothiazolium hemicyanine dye. Org. Lett. 8(17), 3857–3860 (2006)

    Article  Google Scholar 

  • Thakur, V.K., Thakur, M.K., Raghavan, P., Kessler, M.R.: Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain. Chem. Eng. 2(5), 1072–1092 (2014)

    Article  Google Scholar 

  • Uddin, F.: Clays, nanoclays, and montmorillonite minerals. Metall. Mater. Trans. A 39(12), 2804–2814 (2008)

    Google Scholar 

  • Verma, D., Katti, K.S., Katti, D.R., Mohanty, B.: Mechanical response and multilevel structure of biomimetic hydroxyapatite/polygalacturonic/chitosan nanocomposites. Mater. Sci. Eng. C 28(3), 399–405 (2008)

    Article  Google Scholar 

  • Wang, S., Hu, Y., Zhongkai, Q., Wang, Z., Chen, Z., Fan, W.: Preparation and Flammability Properties of Polyethylene/clay Nanocomposites by Melt Intercalation Method from Na + Montmorillonite. Mater. Lett. 57(18), 2675–2678 (2003)

    Google Scholar 

  • Wang, C., Juang, L., Lee, C., Hsu, T., Lee, J., Chao, H.: Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. J. Colloid Interface Sci. 280(1), 27–35 (2004)

    Google Scholar 

  • Wang, S., Chen, L., Tong, Y.: Structure-Property Relationship in Chitosan-Based Biopolymer/montmorillonite Nanocomposites. J. Polym. Sci., Part A: Polym. Chem. 44(1), 686–696 (2006)

    Article  Google Scholar 

  • Weber, C. J., Haugaard, V., Festersen, R., Bertelsen, G : Production and applications of biobased packaging materials for the food industry production and applications of biobased packaging materials for the food industry. 37–41 (2010). (May 2014)

    Google Scholar 

  • Xu, Y., Ren, X., Hanna, M.A.: Chitosan/clay nanocomposite film preparation and characterization. J. Appl. Polym. Sci. 99(4), 1684–1691 (2006)

    Google Scholar 

  • Yilmaz, N., Yapar, S.: Adsorption properties of tetradecyl- and hexadecyl trimethylammonium bentonites. Appl. Clay Sci. 27(3–4), 223–228 (2004)

    Article  Google Scholar 

  • Yoshida, C.M.P., Franco, T.T.: Chitosan tailor-made films : the effects of additives on barrier and mechanical properties and science. 161–170 (2009). (November 2008)

    Google Scholar 

  • Zeng, Q.H., Yu, A.B., Lu, G.Q., Standish, R.K.: Molecular dynamics simulation of organic-inorganic nanocomposites: layering behavior and interlayer structure of organoclays. Chem. Mater. 15(25), 4732–4738 (2003)

    Google Scholar 

  • Zha, W., Choi, S., Lee, K.M., Han, C.D.: Dispersion characteristics of organoclay in nanocomposites based on end-functionalized homopolymer and block copolymer. Macromolecules 38(20), 8418–8429 (2005)

    Article  Google Scholar 

  • Zhu, L., Chen, B., Shen, X.: Sorption of phenol, p-nitrophenol, and aniline to dual-cation organobentonites from water. Environ. Sci. Technol. 34(3), 468–475 (2000)

    Article  Google Scholar 

  • Zoppe, J.O., Peresin, M.S., Habibi, Y., Venditti, R.A., Rojas, O.J.: Reinforcing poly(ε-caprolactone) nanofibers with cellulose nanocrystals. ACS Appl. Mater. Interfaces 1(9), 1996–2004 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Bouhfid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Fardioui, M., Mekhzoum, M.E.M., Qaiss, A.e.K., Bouhfid, R. (2016). Bionanocomposite Materials Based on Chitosan Reinforced with Nanocrystalline Cellulose and Organo-Modified Montmorillonite. In: Jawaid , M., Qaiss, A., Bouhfid, R. (eds) Nanoclay Reinforced Polymer Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-1953-1_7

Download citation

Publish with us

Policies and ethics