Skip to main content

Advertisement

Log in

Performance Modeling and Experimental Investigation of Parasitic Losses in a Flat-Panel Solar Thermoelectric Generator

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a heat transfer-based performance model of a flat-panel solar thermoelectric generator (SFPTEG) is developed. This model essentially encompasses the thermal parasitic losses that are inherent in commercially available thermoelectric generator (TEG) modules. The model is capable of predicting yields from SFPTEG systems in both open (no-load) and closed (with load) circuit modes. An SFPTEG system was fabricated for experimental investigation. At an ordinary solar flux, the system was able to produce a maximum output of 120 mV in open circuit, and 20 mV, corresponding to \(165\,\upmu \hbox {W}\), in closed circuit mode with an electric load close to the internal resistance of the module. In the open and closed circuit modes, the differences between the instantaneous experimental observations and model values were found to be within \(\pm \,5\%\) and \(\pm \,3.5\%\), respectively. The thermal parasitic features of the TEG module were found to have a significant influence on the performance of SFPTEGs and to cause deterioration in the Seebeck coefficient of the module compared with that of the pure thermoelectric material. A parametric study showed that a SFPTEG solar to electric conversion efficiency of 0.82% could be achieved in the absence of thermal parasitic features. A drop of around 80% in the Seebeck coefficient of a real module in the presence of thermal parasitic features was observed. Incorporation of these parasitic losses, along with high thermal concentration, proper waste heat removal and advanced thermoelectric materials, is essential when designing any SFPTEG system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Surface area of module (\(\mathrm{m}^{2}\))

\(A_{\mathrm{leg}} \) :

Area of thermoelectric leg (\(\mathrm{mm}^{2}\))

G :

Incoming solar radiation (\(\mathrm{W/m}^{2}\))

\(G_{\mathrm{leg}} \) :

Geometric ratio of thermoelectric leg (\(\mathrm{mm}\))

\(h_\mathrm{c} \) :

Heat transfer coefficient at cold side of module (\(\mathrm{W/m}^{2}\,\mathrm{K}\))

\(h_{\mathrm{leg}} \) :

Height of thermoelectric leg (\(\mathrm{mm}\))

I :

Current through electric load (\(\mathrm{A}\))

\(k_{\mathrm{leg}} \) :

Thermal conductivity of thermoelectric leg (\(\mathrm{W/cm}\,\mathrm{K}\))

\(k_{\mathrm{th,mat}} \) :

Thermal conductance of thermoelectric material (\(\mathrm{W/K}\))

M :

Matched electric load (–)

n :

Number of thermocouples (–)

\(P_\mathrm{L} \) :

Power generated at electric load (\(\mathrm{W}\))

\(Q_\mathrm{c} \) :

Heat energy released at cold side of module (\(\mathrm{W}\))

\(Q_\mathrm{h} \) :

Heat energy absorbed at hot side of module (\(\mathrm{W}\))

\(Q_\mathrm{T} \) :

Energy through the module (open circuit mode) (\(\mathrm{W}\))

\(R_{\mathrm{el,mat}} \) :

Internal electrical resistance of material (\({\Omega }\))

\(R_\mathrm{L} \) :

Electric load (\({\Omega }\))

\(R_{\mathrm{leg}} \) :

Electric resistivity of thermoelectric leg (\({\Omega }\,\hbox {cm}\))

\(R_{\mathrm{th,par}} \) :

Thermal parasitic resistance (\(\mathrm{K/W}\))

\(S_{\mathrm{leg}} \) :

Seebeck coefficient of thermoelectric leg (\(\upmu \mathrm{V/K}\))

\(S_{\mathrm{mat}} \) :

Seebeck coefficient of thermoelectric material (\(\mathrm{V/K}\))

\(S_{\mathrm{mod}} \) :

Seebeck coefficient of thermoelectric module (\(\mathrm{V/K}\))

\(T_\mathrm{a} \) :

Ambient temperature (\(\mathrm{K}\))

\(T_{\mathrm{c,mat}} \) :

Temperature at cold side of material (\(\mathrm{K}\))

\(T_{\mathrm{h,mat}} \) :

Temperature at hot side of material (\(\mathrm{K}\))

\(T_{\mathrm{c,mod}} \) :

Temperature at cold side of module (\(\mathrm{K}\))

\(T_{\mathrm{h,mod}} \) :

Temperature at hot side of module (\(\mathrm{K}\))

\(U_{\mathrm{loss}} \) :

Overall heat loss coefficient (\(\mathrm{W/m}^{2}\,\mathrm{K}\))

\(V_\mathrm{L} \) :

Voltage across electric load (\(\mathrm{V}\))

\(V_\mathrm{o} \) :

Open circuit (or maximum) voltage (\(\mathrm{V}\))

\(V_\mathrm{w} \) :

Average wind speed (\(\mathrm{m/s}\))

\(\mathrm{ZT}\) :

Dimensionless figure of merit (–)

\(\eta \) :

Solar to electric conversion efficiency (–)

References

  1. Xi, H.; Luo, L.; Fraisse, G.: Development and applications of solar-based thermoelectric technologies. Renew. Sustain. Energy Rev. 11(5), 923–936 (2007)

    Article  Google Scholar 

  2. Rehman, N.U.; Siddiqui, M.A.: Theoretical and field experimental investigation of an arrayed solar thermoelectric flat-plate generator. J. Electron. Mater. 47, 4742–4756 (2018)

    Article  Google Scholar 

  3. Rehman, N.U.; Siddiqui, M.A.: Performance model and sensitivity analysis for a solar thermoelectric generator. J. Electron. Mater. 46(3), 1794–1805 (2017)

    Article  Google Scholar 

  4. Rehman, N.U.; Siddiqui, M.A.: Critical concentration ratio for solar thermoelectric generators. J. Electron. Mater. 45(10), 5285–5296 (2016)

    Article  Google Scholar 

  5. Rehman, N.U.; Uzair, M.; Siddiqui, M.A.: Optical analysis of a novel collector design for a solar concentrated thermoelectric generator. Solar Energy 167, 116–124 (2018)

    Article  Google Scholar 

  6. Mills, D.: Advances in solar thermal electricity technology. Solar Energy 76, 19–31 (2004)

    Article  Google Scholar 

  7. Lenoir, B.; Dauscher, A.; Poinas, P.; Scherrer, H.; Vikhor, L.: Electrical performance of skutterudites solar thermoelectric generators. Appl. Therm. Eng. 23(11), 1407–1415 (2003)

    Article  Google Scholar 

  8. Amatya, R.; Ram, R.J.: Solar thermoelectric generator for micropower applications. J. Electron. Mater. 39(9), 1735–1740 (2010)

    Article  Google Scholar 

  9. Omer, S.A.; Infield, D.G.: Design and thermal analysis of a two stage solar concentrator for combined heat and thermoelectric power generation. Energy Convers. Manag. 41(7), 737–756 (2000)

    Article  Google Scholar 

  10. Mgbemene, C.A.; Duffy, J.; Sun, H.; Onyegegbu, S.O.: Electricity generation from a compound parabolic concentrator coupled to a thermoelectric module. J. Solar Energy Eng. 132(3), 031015 (2010). https://doi.org/10.1115/1.4001670. (Online)

    Article  Google Scholar 

  11. Fan, H.; Singh, R.; Akbarzadeh, A.: Electric power generation from thermoelectric cells using a solar dish concentrator. J. Electron. Mater. 40(5), 1311–1320 (2011)

    Article  Google Scholar 

  12. Nia, M.H.; Nejad, A.A.; Goudarzi, A.M.; Valizadeh, M.; Samadian, P.: Cogeneration solar system using thermoelectric module and fresnel lens. Energy Convers. Manag. 84, 305–310 (2014)

    Article  Google Scholar 

  13. Kraemer, D.; McEnaney, K.; Chiesa, M.; Chen, G.: Modeling and optimization of solar thermoelectric generators for terrestrial applications. Solar Energy 86(5), 1338–1350 (2012)

    Article  Google Scholar 

  14. Telkes, M.: Solar thermoelectric generators. J. Appl. Phys. 25(6), 765–777 (1954)

    Article  Google Scholar 

  15. Goldsmid, H.J.; Giutronich, J.E.; Kaila, M.M.: Solar thermoelectric generation using bismuth telluride alloys. Solar Energy 24(5), 435–440 (1980)

    Article  Google Scholar 

  16. Omer, S.A.; Infield, D.G.: Design optimization of thermoelectric devices for solar power generation. Solar Energy Mater. Solar Cells 53(1), 67–82 (1998)

    Article  Google Scholar 

  17. Vatcharasathien, N.; Hirunlabh, J.; Khedari, J.; Daguenet, M.: Design and analysis of solar thermoelectric power generation system. Int. J. Sustain. Energy 24(3), 115–127 (2005)

    Article  Google Scholar 

  18. Kraemer, D.; Poudel, B.; Feng, H.; Caylor, J.C.; Yu, B.; Yan, X.; Ma, Y.; Wang, X.; Wang, D.; Muto, A.; McEnaney, K.; Chiesa, M.; Ren, Z.; Chen, G.: High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10, 532–538 (2011)

    Article  Google Scholar 

  19. Hsu, C.T.; Huang, G.Y.; Chu, H.S.; Yu, B.; Yao, D.J.: An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module. Appl. Energy 88(12), 5173–5179 (2011)

    Article  Google Scholar 

  20. Ebling, D.; Bartholomé, K.; Bartel, M.; Jägle, M.: Module geometry and contact resistance of thermoelectric generators analyzed by multiphysics simulation. J. Electron. Mater. 39(9), 1376–1380 (2010)

    Article  Google Scholar 

  21. McAdams, W.H.: Heat Transmission. McGraw-Hill, New York (1954)

    Google Scholar 

  22. MacDonald, D.K.C.: Thermoelectricity: An Introduction to the Principles. Dover Publications, INC, Mineola (2006)

    MATH  Google Scholar 

  23. Ioffe, A.F.: Semiconductor Thermoelements, and Thermoelectric Cooling. Infosearch, London (1957)

    Google Scholar 

  24. Olabisi, O.: Handbook of Thermoplastics. (Plastics Engineering), 2nd edn. Marcel Dekker, New York (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Uzair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, N.u., Siddiqui, M.A. & Uzair, M. Performance Modeling and Experimental Investigation of Parasitic Losses in a Flat-Panel Solar Thermoelectric Generator. Arab J Sci Eng 44, 5589–5602 (2019). https://doi.org/10.1007/s13369-018-3640-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3640-1

Keywords

Navigation