Skip to main content

Advertisement

Log in

Theoretical and Field Experimental Investigation of an Arrayed Solar Thermoelectric Flat-Plate Generator

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work theoretically and experimentally investigated the performance of an arrayed solar flat-plate thermoelectric generator (ASFTEG). An analytical model, based on energy balances, was established for determining load voltage, power output and overall efficiency of ASFTEGs. An array consists of TEG devices (or modules) connected electrically in series and operating in closed-circuit mode with a load. The model takes into account the distinct temperature difference across each module, which is a major feature of this model. Parasitic losses have also been included in the model for realistic results. With the given set of simulation parameters, an ASFTEG consisting of four commercially available Bi2Te3 modules had a predicted load voltage of 200 mV and generated 3546 μW of electric power output. Predictions from the model were in good agreement with field experimental outcomes from a prototype ASFTEG, which was developed for validation purposes. Later, the model was simulated to maximize the performance of the ASFTEG by adjusting the thermal and electrical design of the system. Optimum values of design parameters were evaluated and discussed in detail. Beyond the current limitations associated with improvements in thermoelectric materials, this study will eventually lead to the successful development of portable roof-top renewable TEGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.U. Rehman and M.A. Siddiqui, J. Renew. Sustain. Energy (2015). https://doi.org/10.1063/1.4921386.

    Google Scholar 

  2. N.U. Rehman and M.A. Siddiqui, J. Electron. Mater. (2016). https://doi.org/10.1007/s11664-016-4689-9.

    Google Scholar 

  3. N.U. Rehman and M. Siddiqui, J. Electron. Mater. (2016). https://doi.org/10.1007/s11664-016-5230-x.

    Google Scholar 

  4. D. Mills, Sol. Energy (2004). https://doi.org/10.1016/S0038-092X(03)00102-6.

    Google Scholar 

  5. H. Xi, L. Luo, and G. Fraisse, Renew. Sustain. Energy Rev. (2007). https://doi.org/10.1016/j.rser.2005.06.008.

    Google Scholar 

  6. D.M. Rowe, Thermoelectrics Handbook (Boca Raton: CRC Press, 2006), pp. 1–4.

    Google Scholar 

  7. A. Agbossou, Q. Zhang, G. Sebald, and D. Guyomar, Sens. Actuators A Phys. (2010). https://doi.org/10.1016/j.sna.2010.06.026.

    Google Scholar 

  8. M.A. Karri, E.F. Thacher, and B.T. Helenbrook, Energy Convers. Manag. (2011). https://doi.org/10.1016/j.enconman.2010.10.013.

    Google Scholar 

  9. R. Amatya and R.J. Ram, J. Electron. Mater. (2010). https://doi.org/10.1007/s11664-010-1190-8.

    Google Scholar 

  10. S.A. Omer and D.G. Infield, Energy Convers. Manag. (2000). https://doi.org/10.1016/S0196-8904(99)00134-X.

    Google Scholar 

  11. B. Orr, J. Taglieri, L.C. Ding, and A. Akbarzadeh, Energy Convers. Manag. (2016). https://doi.org/10.1016/j.enconman.2016.02.074.

    Google Scholar 

  12. M.H. Nia, A.A. Nejad, A.M. Goudarzi, M. Valizadeh, and P. Samadian, Energy Convers. Manag. (2014). https://doi.org/10.1016/j.enconman.2014.04.041.

    Google Scholar 

  13. D. Kraemer, K. McEnaney, M. Chiesa, and G. Chen, Sol. Energy (2012). https://doi.org/10.1016/j.solener.2012.01.025.

    Google Scholar 

  14. H.J. Goldsmid, J.E. Giutronich, and M.M. Kaila, Sol. Energy (1980). https://doi.org/10.1016/0038-092X(80)90311-4.

    Google Scholar 

  15. S.A. Omer and D.G. Infield, Sol. Energy Mater. Sol. Cells (1998). https://doi.org/10.1016/S0927-0248(98)00008-7.

    Google Scholar 

  16. B. Lenoir, A. Dauscher, P. Poinas, H. Scherrer, and L. Vikhor, Appl. Therm. Eng. (2003). https://doi.org/10.1016/S1359-4311(03)00065-6.

    Google Scholar 

  17. A. Montecucco, J. Siviter, and A.R. Knox, Appl. Energy (2014). https://doi.org/10.1016/j.apenergy.2014.02.030.

    Google Scholar 

  18. A. Vargas-Almeida, M.A. Olivares-Robles, and P. Camacho-Medina, Entropy (2013). https://doi.org/10.3390/e15062162.

    Google Scholar 

  19. A. Vargas-Almeida, M.A. Olivares-Robles, and F.M. Lavielle, Entropy (2015). https://doi.org/10.3390/e17117387.

    Google Scholar 

  20. C.T. Hsu, G.Y. Huang, H.S. Chu, B. Yu, and D.J. Yao, Appl. Energy (2011). https://doi.org/10.1016/j.apenergy.2011.07.033.

    Google Scholar 

  21. D. Ebling, K. Bartholomé, M. Bartel, and M. Jägle, J. Electron. Mater. (2010). https://doi.org/10.1007/s11664-010-1331-0.

    Google Scholar 

  22. Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, and P. Lecoeur, EPL (2012). https://doi.org/10.1209/0295-5075/97/28001.

    Google Scholar 

  23. W.H. McAdams, Heat Transmission, 3rd ed. (New York: McGraw-Hill, 1954), p. 249.

    Google Scholar 

  24. T.L. Bergman, F.P. Incropera, and A.S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. (New York: Wiley, 2007), pp. 3–6.

    Google Scholar 

  25. S.B. Riffat, X. Zhao, and P.S. Doherty, Appl. Therm. Eng. (2005). https://doi.org/10.1016/j.applthermaleng.2004.08.010.

    Google Scholar 

  26. Y. Cai, J. Xiao, W. Zhao, X. Tang, and Q. Zhang, J. Electron. Mater. (2011). https://doi.org/10.1007/s11664-011-1616-y.

    Google Scholar 

  27. Kaysons Akrylic furniture & accessories. http://www.builditsolar.com/References/Glazing/physicalpropertiesAcrylic.pdf. Accessed 21 Mar 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveed ur Rehman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, N., Siddiqui, M.A. Theoretical and Field Experimental Investigation of an Arrayed Solar Thermoelectric Flat-Plate Generator. J. Electron. Mater. 47, 4742–4756 (2018). https://doi.org/10.1007/s11664-018-6363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6363-x

Keywords

Navigation