Skip to main content
Log in

Biosorption of Cd(II) Ions from Aqueous Solution Using Chitosan-iso-Vanillin as a Low-Cost Sorbent: Equilibrium, Kinetics, and Thermodynamic Studies

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the current study, the removal of Cd(II) ions from aqueous solution using chitosan-iso-vanillin biosorbent has been investigated. The impacts of pH, exposure time, adsorbent dosage and initial amount of studied ion on the removal process have been carried out using batch experiments. The quantity of residual ions has been estimated via atomic absorption spectrometry. The synthesized biosorbent is characterized using infrared spectroscopy, DTA, and SEM techniques. The maximum sorption of Cd(II) ions is achieved at pH 5. Langmuir isotherm works as the best explanation model for the experimental data with the highest adsorption capacity equal to \(38.31\,\hbox {mg g}^{-1}\). Kinetic studies reveal that chemisorption is the rate-determining step, and the results point out fast rates of metal ion uptake with 77% highest percentage achieved after 60 min. Thermodynamics suggest spontaneous and endothermic process with raise in randomness at the solid/solution interface throughout the bio-adsorption of Cd(II) ions onto modified chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, I.; Aboul-Enein, H.Y.; Gupta, V.K.: Nano Chromatography and Capillary Electrophoresis: Pharmaceutical and Environmental Analyses. Wiley, Hoboken (2009). ISBN: 978-0-470-17851-5

    Google Scholar 

  2. Gupta, V.K.; Ali, I.: Environmental Water: Advances in Treatment, Remediation and Recycling. Elsevier, Amsterdam (2012)

    Google Scholar 

  3. Vieira, R.S.; Beppu, M.M.: Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres. Water Res. 40, 1726–1734 (2006)

    Article  Google Scholar 

  4. Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N.: Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7, 60–72 (2014)

    Article  Google Scholar 

  5. Madala, S.; Nadavala, S.K.; Vudagandla, S.; Boddu, V.M.; Abburi, K.: Equilibrium, kinetics and thermodynamics of Cadmium(II) biosorption on to composite chitosan biosorbent. Arabian J. Chem. 10, S1883–S1893 (2017)

    Article  Google Scholar 

  6. Fenglian, F.; Wang, Q.: Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 407–418 (2011)

    Article  Google Scholar 

  7. Pillai, S.S.; Deepa, B.; Abraham, E.; Girija, N.; Geetha, P.; Jacob, L.; Koshy, M.: Biosorption of Cd(II) from aqueous solution using xanthated nano banana cellulose: equilibrium and kinetic studies. Ecotoxicol. Environ. Saf. 98, 352–360 (2013)

    Article  Google Scholar 

  8. Ngah, W.S.; Teong, L.C.; Hanafiah, M.A.K.M.: Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr. Polym. 83, 1446–1456 (2011)

    Article  Google Scholar 

  9. Wang, J.; Chen, C.: Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour. Technol. 160, 129–141 (2014)

    Article  Google Scholar 

  10. Feng, N.; Guo, X.; Liang, S.; Zhu, Y.; Liu, J.: Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. Hazard. Mater. 185, 49–54 (2011)

    Article  Google Scholar 

  11. Bhattari, N.; Gunn, J.; Zhang, M.: Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 62, 83–99 (2010)

    Article  Google Scholar 

  12. Jayakumar, R.; Prabaharan, M.; Nair, S.V.; Tamura, H.: Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol. Adv. 28, 142–150 (2010)

    Article  Google Scholar 

  13. Wu, F.C.; Tseng, R.L.; Juang, R.S.: A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J. Environ. Manag. 91, 798–806 (2010)

    Article  Google Scholar 

  14. Vunain, E.; Mishra, A.K.; Mamba, B.B.: Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: a review. Int. J. Biol. Macromol. 86, 570–586 (2016)

    Article  Google Scholar 

  15. Chen, A.H.; Liu, S.C.; Chen, C.Y.: Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J. Hazard. Mater. 154, 184–191 (2008)

    Article  Google Scholar 

  16. Gupta, N.; Kushwaha, A.K.; Chattopadhyaya, M.C.: Adsorption studies of cationic dyes onto Ashoka (Saraca asoca) leaf powder. J. Taiwan Inst. Chem. Eng. 43, 125–131 (2012)

    Article  Google Scholar 

  17. Rocha, L.S.; Almeida, Â.; Nunes, C.; Henriques, B.; Coimbra, M.A.; Lopes, C.B.; Pereira, E.: Simple and effective chitosan based films for the removal of Hg from waters: equilibrium, kinetic and ionic competition. Chem. Eng. J. 300, 217–229 (2016)

    Article  Google Scholar 

  18. Maleki, A.; Pajootan, E.; Hayati, B.J.: Ethyl acrylate grafted chitosan for heavy metal removal from wastewater: equilibrium, kinetic and thermodynamic studies. Taiwan Inst. Chem. Eng. 51, 127–134 (2015)

    Article  Google Scholar 

  19. Kolodynska, D.: Chitosan as an effective low-cost sorbent of heavy metal complexes with the polyaspartic acid. Chem. Eng. J. 173, 520–529 (2011)

    Article  Google Scholar 

  20. Edokpayi, J.N.; Odiyo, J.O.; Popoola, E.O.; Alayande, O.S.; Msagati, T.A.: Synthesis and characterization of biopolymeric chitosan derived from land snail shells and it’s potential for \({\rm Pb}^{2+}\) removal from aqueous solution. Materials 8, 8630–8640 (2015)

    Article  Google Scholar 

  21. Kaya, İ.; Bilici, A.; Gul, M.: Schiff base substitute polyphenol and its metal complexes derived from \(o\)-vanillin with 2,3-diaminopyridine: synthesis, characterization, thermal, and conductivity properties. Poly. Adv. Technol. 19, 1154–1163 (2008)

    Article  Google Scholar 

  22. Alakhras, F.; Al-Shahrani, H.; Al-Abbad, E.; Al-Rimawi, F.; Ouerfelli, N.: Removal of Pb(II) metal ions from aqueous solutions using chitosan–vanillin derivatives chelating polymers. Pol. J. Environ. Stud. (2018, In press)

  23. Bamgbose, J.T.; Adewuyi, S.; Bamgbose, O.; Adetoye, A.A.: Adsorption kinetics of cadmium and lead by chitosan. Afr. J. Biotechnol. 9, 2560–2565 (2010)

    Google Scholar 

  24. Sharma, Y.C.: Thermodynamics of the removal of cadmium by adsorption on indigenous clay. Chem. Eng. J. 145, 64–68 (2008)

    Article  Google Scholar 

  25. WHO: Guidelines for Drinking Water Quality Recommendations, vol. 1, 3rd edn. World Health Organization, Geneva (2008)

  26. Zalloum, H.M.; Al-Qodah, Z.; Mubarak, M.S.: Copper adsorption on chitosan-derived schiff bases. J. Macromol. Sci. Part A. 46, 46–57 (2008)

    Article  Google Scholar 

  27. Karthik, R.; Meenakshi, S.: Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chem. Eng. J. 263, 168–177 (2015)

    Article  Google Scholar 

  28. Rangel-Mendez, J.R.; Monroy-Zepeda, R.; Leyva-Ramos, E.; Diaz-Flores, P.E.; Shirai, K.: Chitosan selectivity for removing cadmium(II), copper(II), and lead(II) from aqueous phase: pH and organic matter effect. J. Hazard. Mater. 162, 503–511 (2009)

    Article  Google Scholar 

  29. Boamah, P.O.; Huang, Y.; Hua, M.; Zhang, Q.; Liu, Y.; Onumah, J.; Wang, W.; Song, Y.: Lead removal onto cross-linked low molecular weight chitosan pyruvic acid derivatives. Carbohydr. Polym. 122, 255–264 (2015)

    Article  Google Scholar 

  30. Heidari, A.; Younesi, H.; Mehraban, Z.; Heikkinen, H.: Selective adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution using chitosan–MAA nanoparticles. Int. J. Biol. Macromol. 61, 251–263 (2013)

    Article  Google Scholar 

  31. Karthik, R.; Meenakshi, S.: Facile synthesis of cross linked-chitosan-grafted-polyaniline composite and its Cr(VI) uptake studies. Int. J. Biol. Macromol. 67, 210–219 (2014)

    Article  Google Scholar 

  32. Peng, Q.; Liu, Y.; Zeng, G.; Xu, W.; Yang, C.; Zhang, J.: Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. J. Hazard. Mater. 177, 676–682 (2010)

    Article  Google Scholar 

  33. Vimala, R.; Das, N.: Biosorption of cadmium(II) and lead(II) from aqueous solutions using mushrooms: a comparative study. J. Hazard. Mater. 168, 376–382 (2009)

    Article  Google Scholar 

  34. Rathinam, A.; Maharshi, B.; Janardhanan, S.K.; Jonnalagadda, R.R.; Nair, B.U.: Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: a kinetic and thermodynamic study. Bioresour. Technol. 101, 1466–1470 (2010)

    Article  Google Scholar 

  35. Ibrahim, M.B.; Sani, S.: Comparative isotherms studies on adsorptive removal of congo red from wastewater by watermelon rinds and neem-tree leaves. Open J. Phys. Chem. 4, 139–146 (2014)

    Article  Google Scholar 

  36. Prakash, N.; Sudha, P.N.; Renganathan, N.G.: Copper and cadmium removal from synthetic industrial wastewater using chitosan and nylon 6. Environ. Sci. Pollut. Res. 19, 2930–2941 (2011)

    Article  Google Scholar 

  37. AL Hamouz, O.C.: Synthesis and characterization of a novel series of cross-linked (phenol, formaldehyde, alkyldiamine) terpolymers for the removal of toxic metal ions from wastewater. Arab. J. Sci. Eng. 41, 119–133 (2016)

    Article  Google Scholar 

  38. Zubieta, C.E.; Messina, P.V.; Luengo, C.; Dennehy, M.; Pieroni, O.; Schulz, P.C.: Reactive dyes remotion by porous TiO\(_2\)-chitosan materials. J. Hazard. Mater. 152, 765–777 (2008)

    Article  Google Scholar 

  39. Al-Arfaj, A.A.; Alakhras, F.; Al-Abbad, E.; Alzamel, N.O.; Al-Omair, N.A.; Ouerfelli, N.: Removal of orange 2G dye from aqueous solutions using \({\rm TiO}_{2}\)-based nanoparticles: isotherm and kinetic studies. Asian J. Chem. 30, 1645–1649 (2018)

    Article  Google Scholar 

  40. Alzboon, K.; Al-Harahsheh, M.; Bani Hani, F.: Waste fly ash-based geopolymer for Pb removal from aqueous solution. J. Hazard. Mater. 188, 414–421 (2011)

    Article  Google Scholar 

  41. Park, S.; Gomez-Flores, A.; Chung, Y. S.; Kim, H.: Removal of cadmium and lead from aqueous solution by hydroxyapatite/chitosan hybrid fibrous sorbent: kinetics and equilibrium studies. J. Chem. 2015, ID 396290 (2015)

  42. Zhang, H.; McDowell, R.G.; Martin, L.R.; Qiang, Y.: Selective extraction of heavy and light lanthanides from aqueous solution by advanced magnetic nanosorbents. Appl. Mater. Interfaces. 8, 9523–9531 (2016)

    Article  Google Scholar 

  43. Alakhras, F.: Kinetic studies on the removal of some lanthanide ions from aqueous solutions using amidoxime–hydroxamic acid polymer. J. Anal. Methods Chem. 2018, ID 4058503 (2018)

  44. Alakhras, F.; Al-Abbad, E.; Alzamel, N.O.; Abouzeid, F.M.; Ouerfelli, N.: Contribution to modelling the effect of temperature on removal of nickel ions by adsorption on nano-bentonite. Asian J. Chem. 30, 1147–1156 (2018)

    Article  Google Scholar 

  45. Al-Harahsheh, M.; Al Jarrah, M.; Mayyas, M.; Alrebaki, M.: High-stability polyamine/amide-functionalized magnetic nanoparticles for enhanced extraction of uranium from aqueous solutions. J. Taiwan Inst. Chem. Eng. 86, 148–157 (2018)

    Article  Google Scholar 

  46. Al-Harahsheh, M.; Al Zboon, K.; Al-Makhadmeh, L.; Hararah, M.; Mahasneh, M.: Fly ash based geopolymer for heavy metal removal: a case study on copper removal. J. Environ. Chem. Eng. 3, 1669–1677 (2015)

    Article  Google Scholar 

  47. Zhang, G.; Qu, R.; Sun, C.; Ji, C.; Chen, H.; Wang, C.; Niu, Y.: Adsorption for metal ions of chitosan coated cotton fiber. J. Appl. Polym. Sci. 110, 2321–2327 (2008)

    Article  Google Scholar 

  48. Debbaudt, A.L.; Ferreira, M.L.; Gschaider, M.E.: Theoretical and experimental study of \({\rm M}^{2+}\) adsorption on biopolymers. III. Comparative kinetic pattern of Pb, Hg and Cd. Carbohydr. Polym. 56, 321–332 (2004)

    Article  Google Scholar 

  49. Roselló, M.; Poschenrieder, C.; Gunsé, B.; Barceló, J.; Llugany, M.: Differential activation of genes related to aluminium tolerance in two contrasting rice cultivars. J. Inorg. Biochem. 152, 160–6 (2015)

    Article  Google Scholar 

  50. Wang, Y.; Tsang, D.C.W.: Effects of solution chemistry on arsenic (V) removal by low-cost adsorbents. J. Environ. Sci. 25, 2291–2298 (2013)

    Article  Google Scholar 

  51. Itskos, G.; Koutsianos, A.; Koukouzas, N.; Vasilatos, C.: Zeolite development from fly ash and utilizat ion in lignite mine-water treatment. Int. J. Miner. Process. 139, 43–50 (2015)

    Article  Google Scholar 

  52. Repo, E.; Warchol, J.K.; Kurniawan, T.A.; Sillanpää, M.E.T.: Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: kinetic and equilibrium modeling. Chem. Eng. J. 161, 73–82 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to acknowledge Imam Abdulrahman Bin Faisal University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Alakhras.

Ethics declarations

Conflicts of interest

No potential conflict of interest was reported by the author(s).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alakhras, F. Biosorption of Cd(II) Ions from Aqueous Solution Using Chitosan-iso-Vanillin as a Low-Cost Sorbent: Equilibrium, Kinetics, and Thermodynamic Studies. Arab J Sci Eng 44, 279–288 (2019). https://doi.org/10.1007/s13369-018-3589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3589-0

Keywords

Navigation