Skip to main content
Log in

Adsorption/desorption of arsenite and arsenate on chitosan and nanochitosan

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Equilibrium sorption studies of anionic species of arsenite, As(III) ions and arsenate As(V) ions onto two biosorbents, namely, chitosan and nanochitosan, have been investigated and compared. The results and trends in the sorption behavior are novel, and we have observed during the sorption process of the As(III) and As(V) on chitosan, a slow process of desorption occurred after an initial maximum adsorption capacity was achieved, before reaching a final but lower equilibrium adsorption capacity. The same desorption trend, however, is not observed on nanochitosan. The gradual desorption of As(III) and As(V) in the equilibrium sorption on chitosan is attributed to the different fractions of the dissociated forms of arsenic on the adsorbent surface and in solution and the extent of protonation of chitosan with the changing of solution pH during sorption. The change of solution pH during the sorption of arsenite ions on chitosan was also influenced by the interaction between the buffering effect of the arsenite species in the aqueous medium and the physical properties of chitosan. The final equilibrium adsorption capacity of chitosan for As(III) and As(V) was found to be around 500 and 8000 μg/g, respectively, whereas the capacities on nanochitosan are 6100 and 13,000 μg/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed N, Siddiqui ZN (2015) Cerium supported chitosan as an efficient and recyclable heterogeneous catalyst for sustainable synthesis of Spiropiperidine derivatives. ACS Sustainable Chem&Eng 3:1701–1707. https://doi.org/10.1021/acssuschemeng.5b00223

    Article  CAS  Google Scholar 

  • Ali I, Al-Othman ZA, Alwarthan A, Asim M, Khan TA (2014) Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environ Sci Pollut Res 21(5):3218–3229

    Article  CAS  Google Scholar 

  • Boddu VM, Abburi K, Talbott JL, Smith ED, Haasch R (2008) Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res 42:633–642

    Article  CAS  Google Scholar 

  • Chen B, Hui CW, McKay G (2001) Pore-surface diffusion modelling for dyes from effluents on pith. Langmuir 17:740–748

    Article  CAS  Google Scholar 

  • Cheung CW, Porter JF, McKay G (2001) Removal of Cu(II) and Zn(II) ions by sorption onto bone char using batch agitation. Langmuir 18:650–656

    Article  CAS  Google Scholar 

  • Cheung CW, Ko DCK, Porter JF, McKay G (2003) Binary metal sorption on bone char mass transport model using IAST. Langmuir 19:4144–4153

    Article  CAS  Google Scholar 

  • Chaudhry SA, Ahmed M, Siddiqui SI, Ahmed S (2016) Fe(III)–Sn(IV) mixed binary oxide-coated sand preparation and its use for the removal of As(III) and As(V) from water: Application of isotherm, kinetic and thermodynamics. J Molec Liq 224(Part A):431–441

    Article  CAS  Google Scholar 

  • Deng S, Yu G, Xie S, Yu, Huang J, Kuwaki Y, Iseki M (2008) Enhanced adsorption of arsenate on the aminated fibers: sorption behavior and uptake mechanism. Langmuir 24:10961–10967

    Article  CAS  Google Scholar 

  • Dias MA, Cortez AR, Barsan MM, Santos JB, Brett CMA, de Sousa HC (2013) Development of greener multi-responsive chitosan biomaterials doped with biocompatible ammonium ionic liquids. ACS Sustain Chem Eng 1:1480–1492. https://doi.org/10.1021/sc4002577

    Article  CAS  Google Scholar 

  • Dogan M, Dogan AU (2007) Arsenic mineralization, source, distribution, and abundance in the Kutahya region of the western Anatolia, Turkey. Environ Geochem Health 29:119–129

    Article  CAS  Google Scholar 

  • Eguez EH, Cho EH (1987) Adsorption of arsenic on activated carbon. JOM 39(7):38–41

    Article  CAS  Google Scholar 

  • Faria PCC, Orfão JJM, Pereira MFR (2004) Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res 38:2043–2052

    Article  CAS  Google Scholar 

  • Gao Y, Lee K, Oshima M, Motomizu S (2000) Adsorption behavior of metal ions on cross-linked chitosan and the determination of oxoanions after pretreatment with a chitosan column. Analyt Sci 16:1303–1308

    Article  CAS  Google Scholar 

  • Gerente C, McKay G, Andres Y, Le Cloirec P (2005) Interactions of natural aminated polymers with different species of arsenic at low concentrations application in water treatment. Adsorption 11:859–863

    Article  Google Scholar 

  • Guibal E, Dambies LC, Milot CJ, Roussy J (1999) Influence of polymer structural parameters and experimental conditions on metal anion sorption by chitosan. Polym Internat 48:671–680

    Article  CAS  Google Scholar 

  • Habuda-Stanić M, Nujić M (2017) Arsenic removal by nanoparticles: a review. Environ Sci Pollut Res 24(3):2381–2393

    Article  CAS  Google Scholar 

  • Han D, Yan L (2013) Supramolecular hydrogel of chitosan in the presence of graphene oxide nanosheets as 2D cross-linkers, ACS Sustainable Chem&Eng, 1:296–300. doi: https://doi.org/10.1021/sc400352a

  • Hayati B, Maleki A, Najafi F, Daraei H, McKay G (2016) Synthesis and characterization of PAMAM/CNT nanocomposite as a super-capacity adsorbent for heavy metal (Ni2+, Zn2+, As3+, Co2+) removal from wastewater. J. Molec. Liq. 224, part a:1032-1040

  • Hering J, Chiu V (2000) Arsenic occurrence and speciation in municipal ground-water-based supply system. J Environ Eng 126(5):471–474

    Article  CAS  Google Scholar 

  • Jain CK, Ali I (2000) Arsenic: occurrence, toxicity and speciation techniques. Water Res 34:4304–4312

    Article  CAS  Google Scholar 

  • Jiang Y, Hua M, Wu B, Ma H, Pan B, Zhang Q (2014) Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process. Environ Sci Pollut Res 21(10):6729–6735

    Article  CAS  Google Scholar 

  • Karmacharya MS, Gupta VK, Tyagi I, Agarwal S, Jha VK (2016) Removal of As(III) and As(V) using rubber tire derived activated carbon modified with alumina composite. J. Molec. Liq. 216:836–844

    Article  CAS  Google Scholar 

  • Ko DCK, Tsang DHK, Porter JF, McKay (2003) Applications of multipore model for the mechanism identification during the adsorption of dye on activated carbon and bagasse pith. Langmuir 19:722–730

    Article  CAS  Google Scholar 

  • Kong Y, Kang J, Shen J, Chen Z, Fan L (2017) Influence of humic acid on the removal of arsenate and arsenic by ferric chloride: effects of pH, As/Fe ratio, initial As concentration, and co-existing solutes. Environ Sci Pollut Res 24(15):13295–13306

    Article  CAS  Google Scholar 

  • Knoerr R, Brendle J, Lebeau B, Demais H (2013) Preparation of ferric oxide modified diatomite and its application in the remediation of As(III) species from solution. Micropor Mesopor Mater 169:185–191

    Article  CAS  Google Scholar 

  • Kumar P, Mural S, Kumar B, Madras G, Bose B (2015) Chitosan immobilized porous polyolefin as sustainable and efficient antibacterial membranes. ACS Sustainable Chem&Eng (3):862–870

  • Kwok CM, McKay G (2015) Novel batch reactor design for the adsorption of arsenate on chitosan. J Chem Technol Biotechnol 85:1561–1568

    Article  CAS  Google Scholar 

  • Li ET, Dunn Q, Grandmaison EW, Goosen MFA (1992) Applications and properties of chitosan. J Bioact Compat Polym 7(4):370–397

    Article  CAS  Google Scholar 

  • Li X, Han Y, Ling Y, Wang X, Sun R (2015) Assembly of layered silicate loaded quaternized chitosan/reduced graphene oxide composites as efficient absorbents for double-stranded DNA. ACS Sustainable Chem&Eng 3:1846–1852. https://doi.org/10.1021/acssuschemeng.5b00404

    Article  CAS  Google Scholar 

  • Liu X, Zhang L (2015) Removal of phosphate anions using the modified chitosan beads: adsorption kinetic, isotherm and mechanism studies. Powder Technol:112–119

  • Lodeiro P, Kwan SM, Perez JT, Gonzalez LF, Gerente C, Andres Y, McKay G (2013) Novel Fe loaded activated carbons with tailored properties for As(V) removal: adsorption study correlated with carbon surface chemistry. Chem Eng J 215-216:105–112

    Article  CAS  Google Scholar 

  • Mandal BK, Ali I (2000) Occurrence, toxicity and speciation techniques. Water Res 34:4304–4312

    Article  Google Scholar 

  • Mima S, Miya M, Iwamoto R, Yoshikawa S (1983) Highly deacetylated chitosan and its properties. J Appl Polym Sci 28(6):1909–1917

    Article  CAS  Google Scholar 

  • Mondal MK, Garg R (2013) A comprehensive review on removal of arsenic using activated carbon prepared from easily available waste materials. Environ Sci Pollut Res 209(4):2670–2678

    Google Scholar 

  • Monteiro OAC, Airoldi C (1999) Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. Int J Biol Macromol 26:119–128

    Article  CAS  Google Scholar 

  • Onsoyen E, Skaugrud O (1999) Metal recovery using chitosan. J Chem Tech Biotechnol 49:395–404

    Article  Google Scholar 

  • Pontius F, Brown KG, Chen CJ (1994) Health implications of arsenic in drinking-water. J Am Water Works Assoc 86:52–63

    Article  CAS  Google Scholar 

  • Podder MS, Majumder CB (2015) SD/MnFe2O4 composite, a biosorbent for As(III) and As(V) removal from wastewater: optimization and isotherm study. J. Molec. Liq. 212(2015):382–404

    Article  CAS  Google Scholar 

  • Qi P, Pichler T (2014) Closerlook at As(III) and As(V) adsorption onto ferrihydrite under competitive conditions. Langmuir 30:11110–11116

    Article  CAS  Google Scholar 

  • Ramalingam B, Motiar M, Khan R, Mondal B, Mandal AB, Das SK (2015) Facile synthesis of silver nanoparticles decorated magnetic-chitosan microsphere for efficient removal of dyes and microbial contaminants. ACS Sustainable Chem&Eng 3:2291–2302

    Article  CAS  Google Scholar 

  • Seco-Reigosa N, Peña-Rodríguez S, Nóvoa-Muñoz JC, Arias-Estévez M, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A (2014) Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture. Environ Sci Pollu. Res 21(5):3218–3229

    Article  CAS  Google Scholar 

  • Setyono T, Valiyaveettil S (2014) Chemically modified sawdust as renewable adsorbent for arsenic removal from water. ACS Sustainable Chem&Eng 2:2722–2729. https://doi.org/10.1021/sc500458x

    Article  CAS  Google Scholar 

  • Smedley PL, Nicolli HB, Macdonald DMJ, Barros AJ, Tullio JO (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl Geochem 17:259–284

    Article  CAS  Google Scholar 

  • Song W, Zhang M, Liang J, Han G (2015) Removal of As(V) from wastewater by chemically modified biomass. J Molec Liq 206:262–267

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustainable Chem&Eng 2:2637–2652. https://doi.org/10.1021/sc500634p

    Article  CAS  Google Scholar 

  • WHO, Guidelines for drinking water quality, health criteria and other supporting information. World Health Organization vol. 1, 1993

  • WHO, Guidelines for Drinking-water Quality. World Health Organization Health Criteria and Other Supporting Information World Health Organization vol.1 , 3rd edition , 2004

  • Wong YC, Szeto YS, Cheung WH, McKay G (2003) Equilibrium studies for acid dye adsorption onto chitosan. Langmuir 19:7888–7894

    Article  CAS  Google Scholar 

  • Wu FC, Tseng RL, Juang RS (1999) Role of pH in metal adsorption from aqueous solutions containing chelating agents on chitosan. Ind Eng Chem Res 38:270–275

    Article  CAS  Google Scholar 

  • Yazdani MR, Tuutijärvi T, Bhatnagar A, Vahala R (2016) Adsorptive removal of arsenic(V) from aqueous phase by feldspars: kinetics, mechanism, and thermodynamic aspects of adsorption. J Molec Liq 214:149–156

    Article  CAS  Google Scholar 

Download references

Nomenclature

qe Equilibrium arsenic adsorption capacity (mmol/g)

qt Arsenic adsorption capacity (mmol/g) at time (t)

m Mass of adsorbent (g)

V Volume of arsenic solution for the adsorption (L)

C0 Initial concentration of arsenic in the solution (mM)

Ce Equilibrium concentration of arsenic in the solution (mM)

pHi Initial solution pH

pHe Equilibrium solution pH

DDA Degree of deacetylation

pKa Dissociation constant

pHpzc Point of zero charge

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon McKay.

Additional information

Responsible editor: Guilherme L. Dotto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwok, K.C.M., Koong, L.F., Al Ansari, T. et al. Adsorption/desorption of arsenite and arsenate on chitosan and nanochitosan. Environ Sci Pollut Res 25, 14734–14742 (2018). https://doi.org/10.1007/s11356-018-1501-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1501-9

Keywords

Navigation