Skip to main content
Log in

Development of Eight-Node Curved-Side Quadrilateral Membrane Element Using Chain Direct Integration Scheme (SCDI) in Area Coordinates (MHCQ8-DI)

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes an integration scheme using successively direct integration and conventional numerical integration to solve the element stiffness matrix. First, construct the integral formula for the element stiffness matrix by conducting direct integration for global coordinate. Second, solve the element stiffness matrix by converting the integration formula of element stiffness matrix for global coordinate into one for local coordinate. In view of the sequence and dependencies of the mixed use of the two integration schemes, the scheme is named as Chained Direct Integration Scheme (SCDI for short). This scheme can be applied when the global coordinate cannot be directly integral because integral interval of global coordinate cannot be determined. To better illustrate the specific operation of the scheme, an eight-node curved-side quadrilateral membrane element (MHCQ8-DI for short) with general interpolation points is constructed. The new element has the advantages of anti-distortion, good convergence, and the excellent performance to fit curved boundaries. The solution process of stiffness matrix of MHCQ8-DI presents that the scheme can reduce the integration dimension and computational workload. The numerical results show that the simulation accuracy for the new scheme was not lower than one for merely using conventional numerical integration. Besides, the theoretical derivation is given to exclude zero energy mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taig, I.C.: Structural analysis by the matrix displacement method. In: English Electric Aviation Report, vol. S017 (1961)

  2. Irons, B.M.: Engineering applications of numerical integration in stiffness methods. AIAA J. 4(11), 2035–2037 (1966)

    Article  MATH  Google Scholar 

  3. Stricklin, J.A.; Ho, W.S.; Richardson, E.Q.; Haisler, W.E.: On isoparametric vs linear strain triangular elements. Int. J. Numer. Methods Eng. 11(11), 1041–1043 (1977)

    Article  Google Scholar 

  4. Bäcklund, J.: On isoparametric elements. Int. J. Numer Methods Eng. 12(4), 731–732 (1978)

    Article  Google Scholar 

  5. Gifford, L.N.: More on distorted isoparametric elements. Int. J. Numer. Methods Eng. 14(2), 290–291 (1979)

    Article  Google Scholar 

  6. Lee, N.S.; Bathe, K.J.: Effects of element distortion on the performance of isoparametric elements. Int. J. Numer. Methods Eng. 36(20), 3553–3576 (1993)

    Article  MATH  Google Scholar 

  7. Arnold, D.N.; Boffi, D.; Falk, R.S.: Approximation by quadrilateral finite elements. Math. Comput. 71(239), 909–922 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kikuchi, F.; Okabe, M.; Fujio, H.: Modification of the 8-node serendipity element. Comput. Methods Appl. Mech. Eng. 179(1–2), 91–109 (1999)

    Article  MATH  Google Scholar 

  9. Li, L.X.; Kunimatsu, S.; Han, X.P.; Xu, S.Q.: The analysis of interpolation precision of quadrilateral elements. Finite Elem. Anal. Des. 41(1), 91–108 (2004)

    Article  Google Scholar 

  10. Rajendran, S.; Liew, K.M.: A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field. Int. J. Numer. Methods Eng. 58(11), 1713–1748 (2003)

    Article  MATH  Google Scholar 

  11. Ooi, E.T.; Rajendran, S.; Yeo, J.H.: Remedies to rotational frame dependence and interpolation failure of US-QUAD8 element. Commun. Numer. Methods Eng. 24(11), 1203–1217 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, C.J.; Wang, R.H.: A new 8-node quadrilateral spline finite element. J. Comput. Appl. Math. 195(1–2), 54–65 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wisniewski, K.; Turska, E.: Improved 4-node Hu-Washizu elements based on skew coordinates. Comput. Struct. 87(7), 407–424 (2009)

    Article  Google Scholar 

  14. Rezaieepajand, M.; Yaghoobi, M.: A free of parasitic shear strain formulation for plane element. Res. Civ. Environ. Eng. 1(01), 01–27 (2013)

    Google Scholar 

  15. Rezaieepajand, M.; Yaghoobi, M.: An efficient formulation for linear and geometric non-linear membrane elements. Latin Am. J. Solids Struct. 11(6), 1012–1035 (2014)

    Article  Google Scholar 

  16. Rezaieepajand, M.; Yaghoobi, M.: Two new quadrilateral elements based on strain states. Civ. Eng. Infrastruct. J. 48(1), 133–156 (2015)

    Google Scholar 

  17. Rezaieepajand, M.; Yaghoobi, M.: A hybrid stress plane element with strain field. Civ. Eng. Infrastruct. J. 50(2), 255–275 (2017)

    Google Scholar 

  18. Long, Y.; Li, J.; Long, Z.; Song, C.: Area co-ordinates used in quadrilateral elements. Commun. Numer. Methods Eng. 15(15), 533–545 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, X.M.; Cen, S.; Fu, X.R.; Long, Y.Q.: A new quadrilateral area coordinate method (QACM-II) for developing quadrilateral finite element models. Int. J. Numer. Methods Eng. 73(13), 1911–1941 (2008)

    Article  MATH  Google Scholar 

  20. Long, Z.F.; Cen, S.; Wang, L.; Fu, X.R.; Long, Y.Q.: The third form of the quadrilateral area coordinate method (QACM-III): theory, application, and scheme of composite coordinate interpolation. Finite Elem. Anal. Des. 46(10), 805–818 (2010)

    Article  Google Scholar 

  21. Cen, S.; Chen, X.M.; Li, C.F.; Fu, X.R.: Quadrilateral membrane elements with analytical element stiffness matrices formulated by the new quadrilateral area coordinate method (QACM-II). Int. J. Numer. Methods Eng. 77(8), 1172–1200 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rajendran, S.; Liew, K.M.: Completeness requirements of shape functions for higher order elements. Struct. Eng. Mech. 10(2), 93–110 (2000)

    Article  Google Scholar 

  23. Chen, X.M.; Long, Y.Q.: An eight plane element using quadrilateral area coordinate. Engineering Mechanics (2003) (in Chinese)

  24. Macneal, R.H.; Harder, R.L.: A proposed standard set of problems to test finite element accuracy. Finite Elem. Anal. Des. 1(1), 3–20 (1985)

    Article  Google Scholar 

  25. Timoshenko, S.P.; Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  26. Wu, C.C.: Dual zero energy modes in mixed/hybrid elements—definition, analysis and control. Comput. Methods Appl. Mech. Eng. 81(1), 39–56 (1990)

    Article  MATH  Google Scholar 

  27. Pian, T.H.H.; Wu, C.C.: Hybrid and Incompatible Finite Element Methods. Chapman & Hall/CRC,Taylor & Francis Group, Boca Raton (2006)

    MATH  Google Scholar 

  28. Long, Z.F.; Cen, S.: Generalized conforming element theory and quadrilateral area coordinate method. China University of Mining and Technology, XuZhou (2000) (in Chinese)

  29. Wang, L.; Long, Z.F.; Long, Y.Q.: Eight-node quadrilateral membrane element formulated by mixed use of the three types of the quadrilateral area coordinate method. Eng. Mech. 27(2), 1–6 (2010). (in Chinese)

    Google Scholar 

  30. Cen, S.; Fu, X.R.; Zhou, M.J.: 8 and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes. Comput. Methods Appl. Mech. Eng. 200(29), 2321–2336 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wilson, E.L.; Taylor, R.L.; Doherty, W.P.; Ghaboussi, J.: Incompatible displacement models. In: Numerical and Computer Methods in Structural Mechanics. Academic Press, New York, USA, pp. 43–57 (1973)

  32. Taylor, R.L.; Beresford, P.J.; Wilson, E.L.: A non-conforming element for stress analysis. Int. J. Numer. Methods Eng. 10(6), 1211–1219 (1976)

    Article  MATH  Google Scholar 

  33. Fu, X.R.; Cen, S.; Li, C.F.; Chen, X.M.: Analytical trial function method for development of new 8-node plane element based on variational principle containing Airy stress function. Eng. Comput. 27(4), 442–463 (2010)

    Article  MATH  Google Scholar 

  34. Ai-Kah, S.; Long, Y.; Song, C.: Development of eight-node quadrilateral membrane elements using the area coordinates method. Comput. Mech. 25(4), 376–384 (2000)

    Article  MATH  Google Scholar 

  35. Cen, S.; Chen, X.M.; Fu, X.R.: Quadrilateral membrane element family formulated by the quadrilateral area coordinate method. Comput. Methods Appl. Mech. Eng. 196(41), 4337–4353 (2007)

    Article  MATH  Google Scholar 

  36. Cen, S.; Long, Z.F.; Zhang, C.S.: Two quadrilateral membrane element eight nodes using the area coordinate. Eng. Mech. (Supplement), 237–241 (1998) (in Chinese)

Download references

Acknowledgements

We would like to acknowledge the helpful comments on this paper received from our reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Wang, M. Development of Eight-Node Curved-Side Quadrilateral Membrane Element Using Chain Direct Integration Scheme (SCDI) in Area Coordinates (MHCQ8-DI). Arab J Sci Eng 44, 4703–4724 (2019). https://doi.org/10.1007/s13369-018-3521-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3521-7

Keywords

Navigation