Skip to main content

Advertisement

Log in

Investigation of the Local Thermal Nonequilibrium Conditions for a Convective Heat Transfer Flow in an Inclined Square Enclosure Filled with Cu-Water Nanofluid

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the local thermal nonequilibrium conditions between the base fluid and the nanoparticles inside an inclined square enclosure have been investigated and analyzed numerically. The effects of magnetic field intensity and the geometry inclination angle on the heat exchange between base fluid and nanoparticles are also taken into account. Two opposite walls of the enclosure are insulated, and the other two walls are kept at different temperatures. A PDE solver, Comsol Multiphysics which uses the Galerkin weighted residual finite element technique, has been employed to solve the governing nonlinear dimensionless equations. Comparisons with previously published works are performed, and excellent agreement is obtained. Numerical simulations are accomplished to calculate the dimensionless temperature profiles along lines \(X=0.05\) and \(Y=X\) inside the enclosure. A single-phase approach with two temperature equations is applied in this work for the first time. The results indicate that the local thermal nonequilibrium conditions are highly controlled by the Nield number and the nanoparticles volume fraction. The domains at which base fluid and nanoparticles are at local thermal equilibrium or local thermal nonequilibrium have been calculated. These findings may open a door for the researchers to choose the suitable model in analyzing the dynamics of nanofluids and will be helpful in investigating the heat transfer rate based on fluid/particle interface. It will also provide the basis for the future research on the entropy generation investigation during natural convection in order to improve the energy efficiency which may be applicable for different renewable energy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(B_0\) :

Magnetic field strength (\(\hbox {kg}\,\hbox {s}^{-2}\,\hbox {A}^{-1}\))

g :

Gravitational acceleration (\(\hbox {m s}^{-2}\))

h :

Volumetric heat transfer coefficient (\(\hbox {W}\,\hbox {m}^{-2}\hbox {K}^{-1}\))

Ha :

Hartmann number (–)

k :

Thermal conductivity (\(\hbox {W m}^{-1}\,\hbox {K}^{-1}\))

L :

Enclosure length (m)

Nu :

Nusselt number (–)

p :

Dimensional fluid pressure (Pa)

P :

Dimensionless fluid pressure (–)

t :

Time (s)

Pr :

Prandtl number (–)

Ra :

Rayleigh number (–)

T :

Temperature (K)

uv :

Dimensional velocity components (\(\hbox {m s}^{-1}\))

UV :

Dimensionless velocities (–)

xy :

Dimensional coordinates (m)

XY :

Dimensionless coordinates (–)

\(\delta \) :

Geometry inclination angle (\(^\circ \))

\(\beta \) :

Thermal expansion coefficient (\(\hbox {K}^{-1}\))

\(\alpha \) :

Thermal diffusivity (\(\hbox {m}^{2}\,\hbox {s}^{-1}\))

\(\gamma \) :

Magnetic field inclination angle (\(^\circ \))

\(\mu \) :

Dynamic viscosity (Ns \(\hbox {m}^{-2}\))

\(\upsilon \) :

Kinematic viscosity (\(\hbox {m}^{2}\,\hbox {s}^{-1}\))

\(\rho \) :

Density (\(\hbox {kg m}^{-3}\))

\(\sigma \) :

Electrical conductivity (\(\hbox {S m}^{-1}\))

\(\theta \) :

Dimensionless temperature (–)

\(\phi \) :

Nanoparticle volume fraction (–)

\(\tau \) :

Dimensionless time (–)

\({\hbox {av}}\) :

Average

\({\hbox {C}}\) :

Cold wall

\({\hbox {f}}\) :

Base fluid

\({\hbox {H}}\) :

Hot wall

\({\hbox {nf}}\) :

Nanofluid

\({\hbox {p}}\) :

Solid particle

References

  1. Ting, H.H.; Hou, S.S.: Numerical study of laminar flow and convective heat transfer utilizing nanofluids in equilateral triangular ducts with constant heat flux. Materials 9(7), 1–17 (2016)

    Article  Google Scholar 

  2. Ganvir, R.P.; Walke, P.V.; Kriplai, V.M.: Heat transfer characteristics in nanofluid—a review. Renew. Sustain. Energy Rev. 75, 451–460 (2017)

    Article  Google Scholar 

  3. Abu-Nada,; Eiyad, : Simulation of heat transfer enhancement in nanofluids using dissipative particle dynamics. Int. Commun. Heat Mass Transf. 85, 1–11 (2017)

    Article  MATH  Google Scholar 

  4. Balla, H.H.; Abdullah, S.; Faizal, W.M.; Zulkifli, R.; Sopian, K.: Enhancement of heat transfer coefficient multi-metallic nanofluid with ANFIS modeling for thermophysical properties. Therm. Sci. 19(5), 1613–1620 (2015)

    Article  Google Scholar 

  5. Uddin, M.J.; Rahman, M.M.; Alam, M.S.: Analysis of natural convective heat transport in a homocentric annuli containing nanofluids with an oriented magnetic field using nonhomogeneous dynamic model. Neural Comput. Appl. (2017). https://doi.org/10.1007/s00521-017-2905-z

    Google Scholar 

  6. Al Kalbani, K.S.; Rahman, M.M.; Alam, M.S.; Al-Salti, N.; Eltayeb, I.A.: Buoyancy induced heat transfer flow inside a tilted square enclosure filled with nanofluids in the presence of oriented magnetic field. Heat Transf. Eng. 39(6), 511–525 (2018)

    Article  Google Scholar 

  7. Uddin, M.J.; Alam, M.S.; Rahman, M.M.: Natural convective heat transfer flow of nanofluids inside a quarter-circular-shaped enclosure using nonhomogeneous dynamic model. Arabian J. Sci. Eng. 42(5), 1883–1901 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sheikholeslami, M.; Zeeshan, A.: Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput. Methods Appl. Mech. Eng. 320, 68–81 (2017)

    Article  MathSciNet  Google Scholar 

  9. Mohebbi, R.; Rashidi, M.M.: Numerical simulation of natural convection heat transfer of a nanofluid in L-shaped enclosure with a heating obstacle. J. Taiwan Inst. of Chem. Eng. 72, 70–84 (2017)

    Article  Google Scholar 

  10. Hussein, A.K.; Bakier, M.A.Y.; Hamida, M.B.B.; Sivasankaran, S.: Magneto-hydrodynamic natural convection in an inclined T-shaped enclosure for different nanofluids and subjected to a uniform heat source. Alex. Eng. J. 55(3), 2157–2169 (2016)

    Article  Google Scholar 

  11. Hatami, M.; Safari, H.: Effect of inside heated cylinder on the natural convection heat transfer of nanofluids in a wavy-wall enclosure. Int. J. Heat Mass Transf. 103, 1053–1057 (2016)

    Article  Google Scholar 

  12. Al-Weheibi, S.M.; Rahman, M.M.; Alam, M.S.; Vajravelu, K.: Nanofluids and the enhancement of natural convection heat transfer. Int. J. Mech. Sci. 131–132, 599–612 (2017)

    Article  Google Scholar 

  13. Quintino, A.; Ricci, E.; Habib, E.; Corcione, M.: Buoyancy-driven convection of nanofluids in an inclined enclosures. Chem. Eng. Res. Des. 122, 63–76 (2017)

    Article  Google Scholar 

  14. Raisi, A.: Heat transfer in an enclosure filled with a nanofluid and containing a heat-generating conductive body. Appl. Therm. Eng. 110, 469–480 (2017)

    Article  Google Scholar 

  15. Kalidasan, K.; Velkennedy, R.; Kanna, P.R.: Natural convection heat transfer enhancement using nanofluid and time-variant temperature on the square enclosure with diagonally constructed twin adiabatic blocks. Appl. Therm. Eng. 92, 219–235 (2016)

    Article  Google Scholar 

  16. Corcione, M.; Cianfrini, M.; Quintino, A.: Enhanced natural convection heat transfer of nanofluids in enclosures with two adjacent walls heated and the two opposite walls cooled. Int. J. Heat Mass Transf. 88, 902–913 (2015)

    Article  Google Scholar 

  17. Fontes, D.H.; dos Santos, D.D.O.; Padilla, E.L.M.; Filho, E.P.B.: Two numerical modelings of free convection heat transfer using nanofluids inside a square enclosure. Mech. Res. Commun. 66, 34–43 (2015)

    Article  Google Scholar 

  18. Tiwari, R.K.; Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)

    Article  MATH  Google Scholar 

  19. Buongiorno, J.: A non-homogeneous equilibrium model for convective transport in flowing nanofluid. J. Heat Transf. 2, 599–607 (2005)

    Google Scholar 

  20. Jou, R.Y.; Tzeng, S.C.: Numerical research on nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures. Int. Commun. Heat Mass Transf. 33, 727–736 (2006)

    Article  Google Scholar 

  21. Esfandiary, M.; Habibzadeh, A.; Sayehvand, H.; Mekanik, A.: Convective heat transfer and pressure drop study in a developing laminar flow using \(\text{ Al }_{{2}}\text{ O }_{{3}}\) nanofluid. Prof. J. Eng. Res. 1(1), 1–9 (2013)

    Google Scholar 

  22. Göktepe, S.; Atalık, K.; Ertürk, H.: Comparison of single and two-phase models for nanofluid convection at the entrance of a uniformly heated tube. Int. J. Therm. Sci. 80, 83–92 (2014)

    Article  Google Scholar 

  23. Hajmohammadi, M.R.: Cylindrical couette flow and heat transfer properties of nanofluids; single-phase and two-phase analyses. J. Mol. Liq. 240, 45–55 (2017)

    Article  Google Scholar 

  24. Kuznetsov, A.V.; Nield, D.A.: Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid. Transp. Porous Med. 83, 425–436 (2010)

    Article  Google Scholar 

  25. Armaghani, T.; Maghrebi, M.J.; Chamkha, A.J.; Nazari, M.: Effects of particle migration on nanofluid forced convection heat transfer in a local thermal non-equilibrium porous channel. J. Nanofluids 3(1), 51–59 (2014)

    Article  Google Scholar 

  26. Nazari, M.; Maghrebi, M.J.; Armaghani, T.; Chamkha, A.J.: New models for heat flux splitting at the boundary of a porous medium: three energy equations for nanofluid flow under local thermal nonequilibrium conditions. J. Phys. 92(11), 1312–1319 (2014)

    Google Scholar 

  27. Armaghani, T.; Chamkha, A.J.; Maghrebi, M.J.; Nazari, M.: Numerical analysis of a nanofluid forced convection in a porous channel; a new heat flux model in LTNE condition. J. Porous Media 17(7), 637–646 (2014)

    Article  Google Scholar 

  28. Seetharamu, K.N.; Leela, V.; Kotloni, N.: Numerical investigation of heat transfer in a micro-porous-channel under variable wall heat flux and variable wall temperature boundary conditions using local thermal non-equilibrium model with internal heat generation. Int. J. Heat Mass Transf. 112, 201–215 (2017)

    Article  Google Scholar 

  29. Öztürk, A.; Kahveci, K.: Slip flow of nanofluids between parallel plates heated with a constant heat flux. Strojniški Vestnik-J. Mech. Eng. 62(9), 511–520 (2016)

    Article  Google Scholar 

  30. Mebrouk, R.; Kadja, M.; Lachi, M.; Fohanno, S.: Numerical study of natural turbulent convection of nanofluids in a tall cavity heated from below. Therm. Sci. 20(6), 2051–2064 (2016)

    Article  Google Scholar 

  31. Al Kalbani, K.S.; Alam, M.S.; Rahman, M.M.: Finite element analysis of unsteady natural convective heat transfer and fluid flow of nanofluids inside a tilted square enclosure in the presence of oriented magnetic field. Am. J. Heat Mass Transf. 3(3), 186–224 (2016)

    Google Scholar 

  32. Rahman, M.M.; Al-Hatmi, M.M.: Hydromagnetic boundary layer flow and heat transfer characteristics of a nanofluid over an inclined stretching surface in the presence of convective surface: a comprehensive study. SQU J. Sci. 19(2), 53–76 (2014)

    Article  Google Scholar 

  33. Oztop, H.F.; Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29, 1326–1336 (2008)

    Article  Google Scholar 

  34. Zienkiewicz, O.C.; Taylor, R.L.: The Finite Element Method, 4th edn. McGraw-Hill, New York (1991)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their constructive comments for the further improvement of the paper. M. M. Rahman is thankful to The Research Council (TRC) of Oman for funding under the Open Research Grant Program ORG/SQU/CBS/14/007 and College of Science for the Grant No. IG/SCI/DOMS/16/15. K. S. Al Kalbani is grateful to TRC for a Doctoral Sponsorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Kalbani, K.S., Rahman, M.M. Investigation of the Local Thermal Nonequilibrium Conditions for a Convective Heat Transfer Flow in an Inclined Square Enclosure Filled with Cu-Water Nanofluid. Arab J Sci Eng 44, 1337–1351 (2019). https://doi.org/10.1007/s13369-018-3514-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3514-6

Keywords

Navigation