Skip to main content
Log in

Mechanistic Modeling of Nanoparticles-Assisted Surfactant Flood

  • Research Article - Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

High interfacial tension (IFT) between oil and water brings about high capillarity leading to high residual oil saturation. Surfactants are employed to reduce IFT or modify wettability and mobilize the trapped oil. This paper aims to investigate the interaction of sodium dodecyl sulfate as a surfactant and two types of silica nanoparticles in different particle sizes for the purpose of enhancing oil recovery. Accordingly, the effect of employed nanoparticles on the critical micelle concentration (CMC) of the surfactant was investigated by the use of electrical conductivity measurements. Phase behavior studies were also carried out to examine the solubilizing ability of the surfactant and nanoparticles assembly. Based on the analysis of solubilization curves, an ultra-low IFT chemical formulation for the target reservoir crude oil was identified and the stability of the optimum solutions was examined through visual observation, optical absorption, and zeta potential measurements. The oil recovery experiments were performed in a quarter five-spot transparent pore network model saturated with crude oil to observe the displacement behavior of the injectant and its influence on oil recovery. Phase behavior tests indicated that the silica nanoparticles smaller in size are more effective in terms of IFT reduction since they can achieve ultra-low IFT level, and the conductivity measurements showed they relatively reduce the CMC of the surfactant. The results of stability tests demonstrated the optimum solutions are stable for more than 1 week. The micromodel experiments displayed that oil recovery increased by 4% during nanoparticles-assisted surfactant flood in comparison with surfactant flood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2D:

2-Dimensional

ASP:

Alkaline–surfactant–polymer flood

CSEL:

Lower effective salinity window

CSEU:

Upper effective salinity window

TEM:

Transmission electron microscope

UTCHEM:

The University of Texas at Austin Chemical Flood Simulator

HBNC70:

UTCHEM input parameter for surfactant model (intercept of maximum height of binodal curve at zero salinity [44])

HBNC71:

UTCHEM input parameter for surfactant model (intercept of maximum height of binodal curve at optimal salinity [44])

HBNC72:

UTCHEM input parameter for surfactant model (intercept of maximum height of binodal curve at twice optimal salinity [44])

CSEL7:

UTCHEM input parameter for surfactant model (lower critical salinity window [44])

CSEU7:

UTCHEM input parameter for surfactant model (upper critical salinity window [44])

References

  1. Sharma, H.; Panthi, K.; Mohanty, K.K.: Surfactant-less alkali-cosolvent-polymer floods for an acidic crude oil. Fuel 215, 484–491 (2018). https://doi.org/10.1016/j.fuel.2017.11.079

    Article  Google Scholar 

  2. Sheng, J.: Modern Chemical Enhanced Oil Recovery: Theory and Practice. Gulf Professional Publishing, Elsevier, Burlington (2011)

    Google Scholar 

  3. Dashti, G.: A Study of Microemulsion Viscosity with Consideration of Polymer and Co-solvents Additives. M.S. Thesis, The University of Texas at Austin, Austin, Texas (May 2014)

  4. Karambeigi, M.S.; Nasiri, M.; Haghighi Asl, A.; Emadi, M.A.: Enhanced oil recovery in high temperature carbonates using microemulsions formulated with a new hydrophobic component. J. Ind. Eng. Chem. 39, 136–148 (2016). https://doi.org/10.1016/j.jiec.2016.05.020

    Article  Google Scholar 

  5. Jin, L.; Budhathoki, M.; Jamili, A.; Li, Zh.; Luo, H.; Delshad, M.; Shiau, B.; Harwell, J.H.: Predicting microemulsion phase behavior for surfactant flooding. In: Paper SPE 179701 (2016). https://doi.org/10.2118/179701-MS

  6. Winsor, P.A.: Solvent Properties of Amphiphilic Compounds. Butterworth Scientific Publications, London (1974)

    Google Scholar 

  7. Yassin, M.R.; Ayatollahi, S.; Rostami, B.; Hasani, K.: Micro-emulsion phase behavior of a cationic surfactant at intermediate interfacial tension in sandstone and carbonate rocks. J. Energy Resour. Technol. 137, 012905–012917 (2015)

    Article  Google Scholar 

  8. Healy, R.N.; Reed, R.L.: Immiscible microemulsion flooding. SPE J. 17, 129–139 (1977). https://doi.org/10.2118/5817-PA

    Article  Google Scholar 

  9. Nelson, R.C.; Pope, G.A.: Phase relationship in chemical flooding. SPE J. 18, 325–338 (1978). https://doi.org/10.2118/6773-PA

    Article  Google Scholar 

  10. Lu, J.; Goudarzi, A.; Chen, P.; Kim, D.H.; Delshad, M.; Mohanty, K.K.; Sepehrnoori, K.; Weerasooriya, U.P.; Pope, G.A.: Enhanced oil recovery from high-temperature, high-salinity naturally fractured carbonates reservoirs by surfactant flood. J. Pet. Sci. Eng. 124, 122–131 (2014). https://doi.org/10.1016/j.petrol.2014.10.016

    Article  Google Scholar 

  11. Kamal, M.S.; Hussein, I.A.; Sultan, A.S.: Review on surfactant flooding: phase behavior, retention, IFT, and field applications. Energy Fuels 31, 7701–7720 (2017)

    Article  Google Scholar 

  12. Huh, C.: Interfacial tensions and solubilizing ability of a microemulsion phase that coexist with oil and brine. J. Colloid Interface Sci. 71, 408–426 (1979). https://doi.org/10.1016/0021-9797(79)90249-2

    Article  Google Scholar 

  13. Nelson, R.C.: The effect of live crude on phase behavior and oil-recovery efficiency of surfactant flooding. SPE J. 23, 501–510 (1983). https://doi.org/10.2118/10677-PA

    Article  Google Scholar 

  14. Escontrla, I.R.; Puetro, M.C.; Miller, C.A.; Soto, A.: Ionic liquids for low-tension oil recovery processes: phase behavior tests. J. Colloid Interface Sci. 504, 404–416 (2017). https://doi.org/10.1016/j.jcis.2017.05.102

    Article  Google Scholar 

  15. Healy, R.N.; Reed, R.L.; Carpenter Jr., C.W.: A laboratory study of microemulsion flooding. SPE J. 15, 87–103 (1975). https://doi.org/10.2118/4752-PA

    Article  Google Scholar 

  16. Hirasaki, G.J.; Van Domselaar, H.R.; Nelson, R.C.: Evaluation of the salinity gradient concept in surfactant flooding. SPE J. 23, 486–500 (1983). https://doi.org/10.2118/8825-PA

    Article  Google Scholar 

  17. Levitt, D.B.; Jackson, A.C.; Heinson, C.; Britton, L.N.; Malik, T.; Dwarakanath, V.; Pope, G.A.: Identification and evaluation of high-performance EOR surfactants. SPE Reserv. Eval. Eng. 12, 243–253 (2006). https://doi.org/10.2118/100089-PA

    Article  Google Scholar 

  18. Dwarakanath, V.; Chaturvedi, T.; Jackson, A.C.; Malik, T.; Siregar, A.; Zhao, P.: Using co-solvents to provide gradients and improve oil recovery during chemical flooding in a light oil reservoir. In: Paper SPE 113965 (2008). https://doi.org/10.2118/113965-MS

  19. Awang, M.B.; Dzulkarnani, I.B.; Wahyudeen, B.Z.M.: Enhancement of IFT reduction in surfactant flooding by branched alcohols. In: Paper IPTC 15140 (2011). https://doi.org/10.2523/IPTC-15140-MS

  20. Khalilinezhad, S.S.; Cheraghian, G.; Roayaei, E.; Tabatabaee, H.; Karambeigi, M.S.: Improving heavy oil recovery in the polymer flooding process by utilizing hydrophilic silica nanoparticles. Energy Sour. Part A Recov. Util. Environ. Eff. (2017). https://doi.org/10.1080/15567036.2017.1302521 (in press)

  21. Khalilinezhad, S.S.; Cheraghian, G.; Karambeigi, M.S.; Tabatabaee, H.; Roayaei, E.: Characterizing the role of clay and silica nanoparticles in enhanced heavy oil recovery during polymer flooding. Arab. J. Sci. Eng. 41, 2731–2750 (2016). https://doi.org/10.1007/s13369-016-2183-6

    Article  Google Scholar 

  22. Zargartalebi, M.; Kharrat, R.; Barati, N.: Enhancement of surfactant flooding performance by the use of silica nanoparticles. Fuel 143, 21–27 (2015). https://doi.org/10.1016/j.fuel.2014.11.040

    Article  Google Scholar 

  23. Zargartalebi, M.; Barati, N.; Kharrat, R.: Influences of hydrophilic and hydrophobic silica nanoparticles on anionic surfactant properties: interfacial and adsorption behaviors. J. Pet. Sci. Eng. 119, 36–43 (2014). https://doi.org/10.1016/j.petrol.2014.04.010

    Article  Google Scholar 

  24. Vatanparast, H.; Javadi, A.; Bahramian, A.: Silica nanoparticles cationic surfactants interaction in water–oil system. Colloids Surf. A Physicochem. Eng. Asp. 521, 221–230 (2017). https://doi.org/10.1016/j.colsurfa.2016.10.004

    Article  Google Scholar 

  25. Biswal, N.R.; Rangera, N.; Singh, J.K.: Effect of different surfactants on the interfacial behavior of the \(n\)-Hexane-Water system in the presence of silica nanoparticles. J. Phys. Chem. B 120, 7265–7274 (2016)

    Article  Google Scholar 

  26. Esmaeilizadeh, P.; Hosseinipour, N.; Bahramian, A.; Fakhroueian, Z.; Arya, Sh: Effect of \(\text{ ZrO }_{2}\) nanoparticles on the interfacial behavior of surfactants at air–water and \(n\)-Heptane-Water interfaces. Fluid Phase Equilib. 361, 289–295 (2014). https://doi.org/10.1016/j.fluid.2013.11.014

    Article  Google Scholar 

  27. Ahmadi, M.-A.; Ahmed, Z.; Phung, L.T.K.; Kashiwao, T.; Bahadori, A.: Evaluation of the ability of the hydrophobic nanoparticles of \(\text{ SiO }_{2}\) in the EOR process through carbonate rock samples. Pet. Sci. Technol. 34, 1048–1054 (2016). https://doi.org/10.1080/10916466.2016.1148052

    Article  Google Scholar 

  28. AlamiNia, H.; Khalilinezhad, S.S.: Application of Hydrophilic Silica Nanoparticles in Chemical Enhanced Oil Recovery Processes. Energy Sources Part A Recovery Util. Environ. Eff. (2017). https://doi.org/10.1080/15567036.2017.1299257 (in press)

  29. Ahmadi, M.-A.; Ahmed, Z.; Phung, L.T.K.; Kashiwao, T.; Bahadori, A.: Experimental investigation of the effect of nanoparticles on micellization behavior of a surfactant: application to EOR. Pet. Sci. Technol. 34, 1055–1061 (2016). https://doi.org/10.1080/10916466.2016.1148051

    Article  Google Scholar 

  30. Cheraghian, G.; Khalilinezhad, S.S.: Improvement of heavy oil recovery and role of nanoparticles of clay in the surfactant flooding process. Pet. Sci. Technol. 34, 1397–1405 (2016). https://doi.org/10.1080/10916466.2016.1198805

    Article  Google Scholar 

  31. Ahmadi, M.A.: Use of nanoparticles to improve the performance of sodium dodecyl sulfate flooding in a sandstone reservoir. Eur. Phys. J. Plus 131, 435 (2016). https://doi.org/10.1140/epjp/i2016-16435-5

    Article  Google Scholar 

  32. Cheraghian, G.; Kiani, S.; Nassar, N.N.; Alexander, S.; Barron, A.: Silica nanoparticles enhancement in the efficiency of surfactant flooding of heavy oil in a glass micromodel. Ind. Eng. Chem. Res. 56, 8528–8534 (2017)

    Article  Google Scholar 

  33. Khorsand, H.; Kiayee, N.; Masoomparast, A.H.: Optimization of amorphous silica nanoparticles synthesis from rice straw ash using design of experiment technique. Part. Sci. Technol. 31, 366–371 (2013). https://doi.org/10.1080/02726351.2012.755587

    Article  Google Scholar 

  34. Jafari, V.; Allahverdi, A.; Vafaei, M.: Ultrasound-assisted synthesis of colloidal nanosilica from silica fume: effect of sonication time on the properties of product. Adv. Powder Technol. 25, 1571–1577 (2014). https://doi.org/10.1016/j.apt.2014.05.011

    Article  Google Scholar 

  35. Metin, C.O.; Lake, L.W.; Miranda, C.R.; Nguyen, Q.P.: Stability of aqueous silica nanoparticles dispersions. J. Nanopart. Res. 13, 839–850 (2011)

    Article  Google Scholar 

  36. Ahmadi, M.-A.; Sheng, J.: Performance improvement of ionic surfactant flooding in carbonate rock samples by use of nanoparticles. Pet. Sci. 13, 725–736 (2016). https://doi.org/10.1007/s12182-016-0109-2

    Article  Google Scholar 

  37. https://www.kruss.de/fileadmin/user_upload/website/brochures/kruss-bro-k100-en.pdf

  38. Ghahremani, H.; Mobaraki, S.; Khalilinezhad, S.S.; Jarrahian, K.: An experimental study of the performance of low-molecular weight polymer for enhanced heavy oil recovery in a heterogeneous media. Geosyst. Eng. 21, 95–102 (2017). https://doi.org/10.1080/12269328.2017.1385424

    Article  Google Scholar 

  39. Mohammadi, S.; Maghzi, A.; Ghazanfari, M.H.; Masihi, M.; Mohebbi, A.; Kharrat, R.: On the control of glass micromodel characteristics developed by laser technology. Energy Resources Part A Recovery Utili. Environ. Eff. 35, 193–201 (2013). https://doi.org/10.1080/15567036.2010.516325

    Article  Google Scholar 

  40. Khalilinezhad, S.S.; Cherghian, G.: Mechanisms behind injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery. Appl. Nanosci. 6, 923–931 (2016). https://doi.org/10.1007/s13204-015-0500-0

    Article  Google Scholar 

  41. Levitt, D.: Experimental Evaluation of High Performance EOR Surfactants for a Dolomite Oil Reservoir. M.S. Thesis, The University of Texas at Austin, Austin, Texas (2006)

  42. Flaaten, A.; Nguyen, Q.P.; Pope, G.A.; Zhang, J.: A systematic laboratory approach to low-cost, high-performance chemical flooding. SPE Reserv. Eval. Eng. 12, 713–723 (2009). https://doi.org/10.2118/113469-PA

    Article  Google Scholar 

  43. Emami Meybodi, H.; Kharrat, R.; Wang, X.: Study of microscopic and macroscopic displacement behaviors of polymer solution in water-wet and oil-wet media. Transp. Porous Media 89, 97–120 (2011). https://doi.org/10.1007/s11242-011-9754-5

    Article  Google Scholar 

  44. UTCHEM-9.0.: A Three-Dimensional Chemical Flood Simulator, Volumes 1 and 2, Reservoir Engineering Research Program, Center for Petroleum and Geosystems Engineering. The University of Texas, Austin (2000)

  45. Goudarzi, A.; Delshad, M.; Sepehrnoori, K.: A chemical EOR benchmark study of different reservoir simulators. Comput. Geosci. 94, 96–109 (2016). https://doi.org/10.1016/j.cageo.2016.06.013

    Article  Google Scholar 

  46. Anderson, G.A.: Simulation of Chemical Flood Enhanced Oil Recovery Processes Including the Effects of Reservoir Wettability. M.S. Thesis, The University of Texas at Austin, Austin, Texas (2006)

  47. Green, D.W.; Willhite, G.P.: Enhanced oil recovery. In: Memorial Found, Society of Petroleum Engineers. The University of Kansas, Lawrence, Kansas (1998)

  48. Healy, R.N.; Reed, R.L.: Physicochemical aspects of microemulsion flooding. SPE J. 14, 491–501 (1974). https://doi.org/10.2118/4583-PA

    Article  Google Scholar 

  49. Hand, D.B.: Dineric distribution: I. The distribution of a consolute liquid between immiscible liquids. J. Phys. Chem. 34, 1961–2000 (1939)

    Article  Google Scholar 

  50. Veedu, F.K.: Scale-Up Methodology for Chemical Flooding. M.S. Thesis, The University of Texas at Austin, Austin, Texas (2010)

  51. Mohammadi, H.; Delshad, M.; Pope, G.A.: Mechanistic modeling of alkaline/surfactant/polymer floods. SPE Reserv. Eval. Eng. 12, 518–527 (2009). https://doi.org/10.2118/110212-PA

    Article  Google Scholar 

  52. AlSofi, A.M.; Liu, J.S.; Han, M.; Aramco, S.: Numerical simulation of surfactant-polymer coreflooding experiments for carbonates. J. Pet. Sci. Eng. 111, 184–196 (2013). https://doi.org/10.1016/j.petrol.2013.09.009

    Article  Google Scholar 

  53. Ravera, F.; Santini, E.; Loglio, G.; Ferrari, M.; Liggieri, L.: Effect of nanoparticles on the properties of liquid/liquid and liquid/air surface layers. J. Phys. Chem. B 110, 19543–19551 (2006)

    Article  Google Scholar 

  54. Ahualli, S.; Iglesias, G.R.; Wachter, W.; Dulle, M.; Minami, D.; Glaatter, O.: Adsorption of anionic and cationic surfactants on anionic colloids: supercharging and destabilization. Langmuir 27, 9182–9192 (2011)

    Article  Google Scholar 

  55. Azadgoleh, J.E.; Kharrat, R.; Barati, N.; Sobhani, A.: Stability of silica nanoparticle dispersion in brine solution: an experimental study. Iran. J. Oil Gas Sci. Technol. 3, 26–40. (2014) http://ijogst.put.ac.ir/article_7485.html

Download references

Acknowledgements

The work was financially sponsored by Eqbal Lahoori Institute of Higher Education, in Mashhad (Iran). We would like to thank Nanosany Corporation for providing the authors with some laboratory materials. The authors thank Research Institute of Food Science and Technology (RIFST), in Mashhad, and Petro Ahoura Company, in Tehran, for the provision laboratory facilities. We would like to thank ESSS for providing the post-processor software needed to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Shahram Khalilinezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilinezhad, S.S., Mobaraki, S., Zakavi, M. et al. Mechanistic Modeling of Nanoparticles-Assisted Surfactant Flood. Arab J Sci Eng 43, 6609–6625 (2018). https://doi.org/10.1007/s13369-018-3415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3415-8

Keywords

Navigation