Skip to main content

Advertisement

Log in

Studies on an Ultrasonic Synthesis, Characterization, and Thermodynamic Analysis of New Metal Nanocatalysts Applied Directly to Alcohol Fuel Cells

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, for direct methanol fuel cell (DMFC), PtCu and PtOs nanocatalysts were prepared using the ultrasound-assisted method to directly enhance methanol fuel cell (DMFC) performance. Ultrasonic applications are safe from laboratory to industry and from environmental impacts on energy applications. It was aimed to strengthen Pt/Cu and Pt/Os dispersion with platinum nanocatalyst directly stabilized by copper (Cu) and osmium (Os) ligands and to increase active surface area by using ultrasonication method. Then, these prepared monodisperse nanomaterials for characterization techniques have been used as X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and induced paired plasma optical emission spectrometry. The results obtained show that methanol crossover has been found to decrease significantly when reaching the value of the large stable open-circuit voltage of the DMFC under the ultrasound-assisted system. Polarization performance does not change significantly. For this reason, in an ultrasound-assisted process, increased energy density of DMFC in high methanol concentration improves operating performance. The membrane electrode assembly having PtOs and PtCu provided the highest performance with the peak power density of 0.582 and 0.489 \(\hbox {mW/cm}^{2}\) at a temperature of 120 \(^{\circ }\hbox {C}\) and concentration methanol of 4 M, respectively. Based on the results of the stability tests, a commercial cathode catalyst was developed from PtCu and PtOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ozturk, Z.; Sen, F.; Sen, S.; Gokagac, G.J.: The preparation and characterization of nano-sized Pt-Pd alloy catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation. Mater. Sci. 47, 8134–8144 (2012). https://doi.org/10.1007/s10853-012-6709-3

    Article  Google Scholar 

  2. Boudghene, S.A.; Traversa, E.: Fuel cells an alternative to standard sources of energy. Renew. Sustain. Energy Rev. 6, 297–306 (2002)

    Google Scholar 

  3. Sen, F.; Sen, S.; Gökağaç, G.: Efficiency enhancement of methanol/ethanol oxidation reactions on Pt nanoparticles prepared using a new surfactant, 1,1-dimethyl heptanethiol. Phys. Chem. 13, 1676–1684 (2011)

    Google Scholar 

  4. Sen, F.; Gökağaç, G.: Activity of carbon-supported platinum nanoparticles toward methanol oxidation reaction: role of metal precursor and a new surfactant, tert-octanethiol. J. Phys. Chem. 111, 1467 (2007)

    Google Scholar 

  5. Vielstich, W.; Lamm, A.; Gasteiger, H.E.: Handbook of Fuel Cells—Fundamentals Technology and Applications, 1st edn. Wiley, West Sussex (2003)

    Google Scholar 

  6. Hirscher, M.: Handbook of Hydrogen Storage. Wiley, Weinheim (2010)

    Book  Google Scholar 

  7. Zhao, T.S.; Chen, R.; Yang, W.W.; Xu, C.: Small direct methanol fuel cells with passive supply of reactants. J. Power Sources 191, 185–202 (2009)

    Article  Google Scholar 

  8. Sharma, S.; Pollet, B.G.: Support materials for PEMFC and DMFC electrocatalysts—a review. J. Power Sources 208, 96–119 (2012)

    Article  Google Scholar 

  9. Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E.S.; Mallouk, T.E.: Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 280, 1735–1737 (1998)

    Article  Google Scholar 

  10. Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C.; Liao, J.; Lu, T.; Xing, W.: Recent advances in catalysts for direct methanol fuel cells. Energy Environ. Sci. 4, 2736–2753 (2011)

    Article  Google Scholar 

  11. Yang, B.; Manthiram, A.: Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells. Electrochem. Solid-State Lett. 6(11), 229–231 (2003). https://doi.org/10.1149/1.1613073

    Article  Google Scholar 

  12. Basri, S.; Kamarudin, S.K.; Daud, W.R.W.; Yaakub, Z.: Nanocatalyst for direct methanol fuel cell (DMFC). Int. J. Hydrog. Energy 35(15), 7957–7970 (2010)

    Article  Google Scholar 

  13. Mauritz, K.A.; Moore, R.B.: State of understanding of Nafion. Chem. Rev. 104(109), 4535–4585 (2004)

    Article  Google Scholar 

  14. Stamenkovic, V.R.; Fowler, B.; Mun, B.S.; wang, G.; Ross, P.N.; Lucas, C.A.; Markovic, N.M.: Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007)

    Article  Google Scholar 

  15. Li, M.; Zhao, Z.; Cheng, T.; Fortunelli, A.; Chen, C.Y.; Yu, R.; Zhang, Q.; Gu, L.; Merinov, B.V.; Lin, Z.; Zhu, E.; Yu, T.; Jia, Q.; Guo, J.; Zhang, L.; Goddard, W.A.; Huang, Y.; Duan, X.: Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016)

    Article  Google Scholar 

  16. Reeve, R.W.; Christensen, P.A.; Hamnett, A.; Haydock, S.A.; Roy, S.C.: Methanol tolerant oxygen reduction catalysts based on transition metal sulfides. J. Electrochem. Soc. 145, 3463–3471 (1998)

    Article  Google Scholar 

  17. Feng, Y.; Ye, F.; Liu, H.; Yang, J.: Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design. Sci. Rep. 5, 16219 (2015)

    Article  Google Scholar 

  18. Song, S.Q.; Zhou, W.J.; Li, W.Z.; Sun, G.; Xin, Q.; Kontou, S.; Tsiakaras, P.: Direct methanol fuel cells: methanol crossover and its influence on single DMFC performance. Ionics 10, 458–462 (2004)

    Article  Google Scholar 

  19. Casalegno, A.; Marchesi, R.: DMFC performance and methanol cross-over: experimental analysis and model validation. J. Power Sources 185, 318–330 (2008)

    Article  Google Scholar 

  20. Wang, J.; Wasmus, S.; Savinell, R.F.: Evaluation of ethanol, 1-propanol, and 2-propanol in a direct oxidation polymer-electrolyte fuel cell a real-time mass spectrometry study. J. Electrochem. Soc. 142, 4218 (1995)

    Article  Google Scholar 

  21. Galvita, V.; Semin, G.; Belyaev, V.; Semikolenov, V.; Tsiakaras, P.; Sobyanin, V.: Synthesis gas production by steam reforming of ethanol. Appl. Catal. A 220, 123 (2001)

    Article  Google Scholar 

  22. Andreadis, G.; Song, S.; Tsiakaras, P.: Direct ethanol fuel cell anode simulation model. J. Power Sources 157, 657–665 (2006)

    Article  Google Scholar 

  23. Song, S.; Zhou, W.; Liang, Z.; Cai, R.; Sun, G.; Xin, Q.; Stergiopoulos, V.; Tsiakaras, P.: The effect of methanol and ethanol cross-over on the performance of PtRu/C-based anode DAFCs. Appl. Catal. B Environ. 55, 65–72 (2005)

    Article  Google Scholar 

  24. Qi, Z.; Kaufman, A.: Liquid-feed direct oxidation fuel cells using neat 2-propanol as fuel. J. Power Sources 118, 54–60 (2003)

    Article  Google Scholar 

  25. Vigier, F.; Rousseau, S.; Coutanceau, C.; Leger, J.M.; Lamy, C.: Electrocatalysis for the direct alcohol fuel cell. Top. Catal. 40(1–4), 111–121 (2006)

    Article  Google Scholar 

  26. Shukla, A.K.; Raman, R.K.: Methanol-resistant oxygen-reduction catalysts for direct methanol fuel cells. Ann. Rev. Mater. Res. 33, 155–168 (2003). https://doi.org/10.1146/annurev.matsci.33.072302.093511

    Article  Google Scholar 

  27. Antolini, E.; Salgado, J.R.C.; Gonzalez, E.R.: The stability of Pt-M (M 1/4 first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells. A literatüre review and tests on a Pt–Co catalyst. J. Power Sources 160, 957–968 (2006)

    Article  Google Scholar 

  28. Xu, J.B.; Zhao, T.S.; Yang, W.W.; Shen, S.Y.: Effect of surface composition of Pt–Au alloy cathode catalyst on the performance of direct methanol fuel cells. Int. J. Hydrog. Energy 35, 8699–8706 (2010)

    Article  Google Scholar 

  29. Selvarani, G.; Selvaganesh, S.V.; Krishnamurthy, S.; Kiruthika, G.V.M.; Dhar, S.; Pitchumani, S.; et al.: A methanol-tolerant carbon-supported Pt–Au alloy cathode catalyst for direct methanol fuel cells and its evaluation by DFT. J. Phys. Chem. C. 113, 7461–7468 (2009)

    Article  Google Scholar 

  30. Ren, X.; Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S.: Methanol transport through Nafion membranes. Electro-osmotic drag effects on potential step measurements. J. Elecrochem. Soc. 147, 466–474 (2000)

    Article  Google Scholar 

  31. Ren, X.; Springer, T.E.; Gottesfeld, S.: Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance. J. Elecrochem. Soc. 147, 92–98 (2000)

    Article  Google Scholar 

  32. Seo, S.H.; Lee, C.S.: A study on the overall efficiency of direct methanol fuel cell by methanol crossover current. Appl. Energy 87, 2597–2604 (2010)

    Article  Google Scholar 

  33. Liu, Z.; Ling, X.Y.; Su, X.; Lee, J.Y.: Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J. Phys. Chem. B. 108, 8234–8240 (2004)

    Article  Google Scholar 

  34. Klug, H.; Alexander, L.: X-ray Diffraction Procedures, 1st edn. Wiley, New York (1954)

    MATH  Google Scholar 

  35. Deivaraj, T.C.; Chen, W.X.; Lee, J.Y.: Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol. J. Mater. Chem. 13, 2555 (2003)

    Article  Google Scholar 

  36. Yonezawa, T.; Toshima, N.; Wakai, C.; Nakahara, M.; Nishinaka, M.; Tominaga, T.; Nomura, H.: Structure of monoalkyl-monocationic surfactants on the microscopic three-dimensional platinum surface in water. Colloids Surf. A 169, 35–45 (2000)

    Article  Google Scholar 

  37. Kim, Y.S.; Pivovar, B.S.: The membrane-electrode interface in PEFCs: III. The effect of methanol concentration in DMFCs. J. Electrochem. Soc. 157, 1608–1615 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahdişen Gezer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gezer, B. Studies on an Ultrasonic Synthesis, Characterization, and Thermodynamic Analysis of New Metal Nanocatalysts Applied Directly to Alcohol Fuel Cells. Arab J Sci Eng 43, 6203–6209 (2018). https://doi.org/10.1007/s13369-018-3368-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3368-y

Keywords

Navigation