Skip to main content
Log in

Design and Simulation of MEMS Electrothermal Compliant Actuator-Based Analog-to-Digital Converter

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, an out-of-plane microelectrothermal compliant actuator-based 3-bit analog-to-digital (ADC) converter is designed which works analogous to an electronic flash-type ADC. The MEMS ADC is built using an array of eight individual electrothermal compliant vertical (ETCV) actuators of varying cold arm width to produce distinct digital output levels. A complete analytical modelling is performed on a single ETC vertical actuator, and a relation between the applied voltage and the out-of-plane deflection is derived. The digital output condition is obtained when the free end of the ETCV actuator contact pads comes into contact with the output contact pads. The proposed ADC is also designed and simulated using MEMS CAD tool CoventorWare, and its coupled electro-thermo-mechanical analysis is carried out to illustrate its performance. The device operates in the range of 0–9 V analog input voltage for a 3-bit sample with low power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walden, R.H.: Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun. 17, 539–550 (1999)

    Article  Google Scholar 

  2. Lee, P.; Lee, S.H.; Kwon, S.W.; Hong, Y.T.; Lee S.S.: Flash type MEMS-based analog-to-digital converter of field emission. In: Proceedings of IEEE International Conference on Transducers 2009, Denver, CO, USA, pp. 1198–1201 (2009)

  3. Proie, R.; Pulskamp, J.S,; Polcawich, R.G.; Ivanov, T.; Zaghloul, M.: Low-power 3-bit piezoelectric MEMS analog to digital converter. In: Proceedings of IEEE 24th International Conference on Micro Electro Mechanical System, Cancun, Mexico, pp. 1241–1244 (2011)

  4. Sharma, A.; Ram, W.S.; Amarnath, C.: Mechanical logic devices and circuits. In: Proceedings of 14th National Conference on Machines and Mechanisms, NIT, Durgapur, India, pp. 235–239 (2009)

  5. Yeh, W.F.; Wang, J.A.: Force domain analog-to-digital converter applied to microscale tensile test. Exp. Mech. 53, 795–806 (2013)

    Article  Google Scholar 

  6. Majid, A.J.: Electrostatic and electromagnetic fields actuators for MEMS AD/DA converters. Int. J. Eng. 2, 35–41 (2008)

    Google Scholar 

  7. Mehdizadeh, F.; Soroosh, M.; Alipour-Banaei, H.; Farshidi, E.: All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quantum Electron. (2017). https://doi.org/10.1007/s11082-016-0880-8

    Google Scholar 

  8. Pandiyan, P.; Uma, G.; Umapathy, M.: Design and simulation of MEMS-based digital-to-analog converters for in-plane actuation. Arab J. Sci. Eng. (2017). https://doi.org/10.1007/s13369-017-2544-9

    Google Scholar 

  9. Guckel, H.; Klein, J.; Christenson, T.; Skrobis, K.; Laudon, M.; Lovell, E.G.: Thermo-magnetic metal flexure actuators. In: Proceedings of IEEE Solid State Sensorand Actuator Workshop, New York, pp. 73–75 (1992)

  10. Que, L.; Park, J.S.; Gianchandani, Y.B.: Bent-beam electrothermal actuators for high force application. In: Proceedings of 12th IEEE International Conference on Micro Electro Mechanical Systems, Orlando, Florida, USA pp. 31–36 (1999)

  11. Deladi, S.; Krijnen, G.; Elwenspoek, M.C.: Parallel-beams/lever electrothermal out-of-plane actuator. Microsyst. Technol. 10, 393–399 (2004)

    Article  Google Scholar 

  12. Singh, J.; Teo, J.H.S.: Two axes scanning SOI MEMS micro mirror for endoscopic bioimaging. J. Micromec. Microeng. 18(02), 1–9 (2007)

    Google Scholar 

  13. Comtois, J.H.; Bright, V.M.: Applications for surface-micromachined polysilicon thermal actuators and arrays. Sens. Actuator A Phys. 58, 19–25 (1997)

    Article  Google Scholar 

  14. Fedder, G.K.; Howe, R.T.: Thermal assembly of polysilicon microstructures. In: Proceedings of IEEE Micro Electro Mechanical System Workshop, pp. 63–68 (1991)

  15. Lin, L.; Chiao, M.: Electrothermal response of lineshape microstructures. Sens. Actuators A 55, 35–41 (1996)

    Article  Google Scholar 

  16. Huang, Qing-An; Lee, Neville Ka Shek: Analysis and design of polysilicon thermal flexure actuator. J. Micromech. Microeng. 9, 64–70 (1999)

    Article  Google Scholar 

  17. Varona, J.; Tecpoyotl-Torres, M.; Hamoui, A.A.: Polysilicon vertical actuator powered with waste heat. In: Proceedings of IEEE Conference on Custom Integrated Circuits Conference, San Jose, CA, pp. 519–522 (2008)

  18. Yan, D.; Khajepour, A.; Mansour, R.: Design and modeling of a MEMS bidirectional vertical thermal actuator. J. Micromech. Microeng. 14, 841–850 (2004)

    Article  Google Scholar 

  19. Kennedy, J.B.; Madugula, M.K.S.: Elastic Analysis of Structures, vol. 9. Harper and Row, New York (1990). (ch. 7, 9)

    MATH  Google Scholar 

  20. CoventorWare Analyzer Reference Standard Capabilities Manual, Version (2012)

  21. Zhu, Y.; Corigliano, A.; Espinosa, H.D.: A thermal actuator for nanoscale in situ microscopy testing: design and characterization. J. Micromech. Microeng. 16(2), 242–253 (2006)

    Article  Google Scholar 

  22. Krecinic, F.; Duc, T.Chu; Lau, G.K.; Sarro, P.M.: Finite element modelling and experimental characterization of an electro-thermally actuated silicon-polymer micro gripper. J. Micromech. Microeng. 18(06), 1–7 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Uma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandiyan, P., Uma, G. & Umapathy, M. Design and Simulation of MEMS Electrothermal Compliant Actuator-Based Analog-to-Digital Converter. Arab J Sci Eng 44, 1823–1831 (2019). https://doi.org/10.1007/s13369-018-3165-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3165-7

Keywords

Navigation