Skip to main content

Advertisement

Log in

Effects of Azorhizophilus paspali and Paenibacillus mucilaginosus as Biofertilizer and Determination of Nutritional Efficiency by Sensors

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The benefits of nitrogen-fixing and potassium-solubilizing microorganisms in plant growth were investigated by using micro-sized ion-selective sensors developed in our laboratory. Azorhizophilus paspali (ATCC 23367) having nitrogen-fixing capability and Paenibacillus mucilaginosus (DSM 24461) having potassium-solubilizing capability were used in media. The microorganisms grown in aseptic conditions were mixed with soil and compost in order to improve plant nutrition, and samples taken from growth medium were examined for 23 days by ammonium- and potassium-selective PVC membrane sensors exhibiting almost Nernstian response. The highest nitrate release were obtained on the 14th day of inoculation in samples using A. paspali. The highest potassium release was obtained on 18th day of inoculation in samples using P. mucilaginosus. The results showed that bacterial inoculation had a more stimulating effect on assimilation of N and K in compost than in soil. In addition, the effect of microbial strains on shoot and root growth and nutrient uptake of tomato was tested in pot experiments using compost. A. paspali and P. mucilaginosus inoculation increased the shoot and root dry weight of tomato seedlings, respectively, 7–14 and 12–19% when compared with the control. The results showed that addition of the microorganisms into compost would be beneficial in plant nutrition. Application of these microorganisms as biofertilizers in barren areas will protect soil from the harmful effects of chemical fertilizers with an environmentally friendly approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fallahzade, J.; Hajabbasi, M.: The effects of irrigation and cultivation on the quality of desert soil in central Iran. Land Degrad. Dev. 23(1), 53–61 (2012)

    Article  Google Scholar 

  2. Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S.: Agricultural sustainability and intensive production practices. Nature 418(6898), 671–677 (2002)

    Article  Google Scholar 

  3. Smil, V.: Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production. MIT Press, Cambridge (2004)

    Google Scholar 

  4. Reed, S.C.; Seastedt, T.R.; Mann, C.M.; Suding, K.N.; Townsend, A.R.; Cherwin, K.L.: Phosphorus fertilization stimulates nitrogen fixation and increases inorganic nitrogen concentrations in a restored prairie. Appl. Soil Ecol. 36(2), 238–242 (2007)

    Article  Google Scholar 

  5. Dos Santos, P.C.; Fang, Z.; Mason, S.W.; Setubal, J.C.; Dixon, R.: Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13(1), 162 (2012)

    Article  Google Scholar 

  6. McGlynn, S.E.; Boyd, E.S.; Peters, J.W.; Orphan, V.J.: Classifying the metal dependence of uncharacterized nitrogenases. Front. Microbiol. 3, 419 (2013)

    Article  Google Scholar 

  7. Gruber, N.; Galloway, J.N.: An earth-system perspective of the global nitrogen cycle. Nature 451(7176), 293–296 (2008)

    Article  Google Scholar 

  8. Vitousek, P.M.; Aber, J.D.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D.G.: Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7(3), 737–750 (1997)

    Google Scholar 

  9. Hamdi, Y.: Application of Nitrogen-Fixing Systems in Soil Improvement and Management, vol. 49. Food and Agriculture Org (1982)

  10. Klymenko, O.; Klymenko, M.; Kameneva, I.; Klymenko, N.: Ecologization of fruit crops grafted seedlings growing. In: I International Symposium on Fruit Culture and Its Traditional Knowledge along Silk Road Countries 1032, pp. 125–132 (2013)

  11. Goldstein, A.H.: Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Phosphate in Microorganisms: Cellular and Molecular Biology. ASM Press, Washington, pp. 197–203 (1994)

  12. Hu, X.; Chen, J.; Guo, J.: Two phosphate-and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J. Microbiol. Biotechnol. 22(9), 983–990 (2006)

    Article  Google Scholar 

  13. Diep, C.N.; Hieu, T.N.: Phosphate and potassium solubilizing bacteria from weathered materials of denatured rock mountain, Ha Tien, Kiên Giang province Vietnam. Am. J. Life Sci. 1(3), 88–92 (2013)

    Article  Google Scholar 

  14. Antoun, H., Prévost, D.: Ecology of plant growth promoting rhizobacteria. In: PGPR: Biocontrol and Biofertilization, pp. 1–38. Springer, Berlin (2005)

  15. Bélanger, R., Avis, T.: Ecological processes and interactions occurring in leaf surface fungi. St. Paul, MN: The American Phytopathological Society, pp. 193–208 (2002)

  16. Nishio, M.: Microbial Fertilizers in Japan. ASPAC Food & Fertilizer Technology Center (1996)

  17. Whipps, J.M.: Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can. J. Bot. 82(8), 1198–1227 (2004)

    Article  Google Scholar 

  18. Vassilev, N.; Vassileva, M.; Nikolaeva, I.: Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl. Microbiol. Biotechnol. 71(2), 137–144 (2006)

    Article  Google Scholar 

  19. Zamani, J.; Hajabbasi, M.A.; Alaie, E.; Sepehri, M.; Leuchtmann, A.; Schulin, R.: The effect of Piriformospora indica on the root development of maize (Zea mays L.) and remediation of petroleum contaminated soil. Int. J. Phytoremediat. 18(3), 278–287 (2016)

    Article  Google Scholar 

  20. Bobacka, J.; Ivaska, A.; Lewenstam, A.: Plasticizer-free all-solid-state potassium-selective electrode based on poly (3-octylthiophene) and valinomycin. Anal. Chim. Acta 385(1), 195–202 (1999)

    Article  Google Scholar 

  21. Gallardo, J.; Alegret, S.; Munoz, R.; De-Roman, M.; Leija, L.; Hernández, P.; Del Valle, M.: An electronic tongue using potentiometric all-solid-state PVC-membrane sensors for the simultaneous quantification of ammonium and potassium ions in water. Anal. Bioanal. Chem. 377(2), 248–256 (2003)

    Article  Google Scholar 

  22. Khorramdel, S.; Seyyedi, S.: Effects of compost extract and biofertilizers on quantitative and qualitative yield and different cuttings of sweet majoram (Majorana hortensis L.). J. Sci. Technol. Greenh. Cult. 6(23) (2015)

  23. Molla, A.H.; Haque, M.M.; Haque, M.A.; Ilias, G.: Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agric. Res. 1(3), 265–272 (2012)

    Article  Google Scholar 

  24. Meunchang, S.; Panichsakpatana, S.; Weaver, R.: Tomato growth in soil amended with sugar mill by-products compost. Plant Soil 280(1), 171–176 (2006)

    Article  Google Scholar 

  25. Haque, M.M.; Ilias, G.; Molla, A.: Impact of Trichoderma-enriched biofertilizer on the growth and yield of mustard (Brassica rapa L.) and tomato (Solanum lycopersicon Mill.). Agriculturists 10(2), 109–119 (2012)

    Article  Google Scholar 

  26. Meena, R.K.; Sanjay, K.; Sutanu, M.; Devendra, K.; Manoj, K.: Effect of organic manures and biofertilizers on growth, flowering, yield and quality of tomato cv. PUSA SHEETAL. Int. J. Agric. Sci. 10(1), 329–332 (2014)

    Google Scholar 

  27. Lynn, T.M.; Win, H.S.; Kyaw, E.P.; Latt, Z.K.; Yu, S.: Characterization of phosphate solubilizing and potassium decomposing strains and study on their effects on tomato cultivation. Int. J. Innov. Appl. Stud. 3(4), 959–966 (2013)

    Google Scholar 

  28. Chatterjee, R.; Khalko, S.: Influence of organic amendments and inorganic fertilizers on late blight incidence and yield of tomato (Lycopersicon esculentum Mill.). Int. J. Geol. Agric. Environ. Sci. 1(1), 36–38 (2013)

    Google Scholar 

  29. Denarie, J.; Debelle, F.; Prome, J.-C.: Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem. 65(1), 503–535 (1996)

    Article  Google Scholar 

  30. Dobbelaere, S.; Vanderleyden, J.; Okon, Y.: Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 22(2), 107–149 (2003)

    Article  Google Scholar 

  31. Meena, V.S.; Maurya, B.; Verma, J.P.: Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol. Res. 169(5), 337–347 (2014)

    Article  Google Scholar 

  32. Yadav, B.K.; Sidhu, A.S.: Dynamics of potassium and their bioavailability for plant nutrition. In: Potassium solubilizing microorganisms for sustainable agriculture. pp. 187–201. Springer, Berlin (2016)

  33. Wang, P.; Wu, S.-H.; Wen, M.-X.; Wang, Y.; Wu, Q.-S.: Effects of combined inoculation with Rhizophagus intraradices and Paenibacillus mucilaginosus on plant growth, root morphology, and physiological status of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings under different levels of phosphorus. Sci. Hortic. 205, 97–105 (2016)

    Article  Google Scholar 

  34. Datta, J., Banerjee, A., Sikdar, M.S., Gupta, S., Mondal, N.: Impact of combined exposure of chemical, fertilizer, bio-fertilizer and compost on growth, physiology and productivity of Brassica campestries in old alluvial soil (2009)

  35. Shaukat, K.; Affrasayab, S.; Hasnain, S.: Growth responses of Helianthus annus to plant growth promoting rhizobacteria used as a biofertilizers. Int. J. Agric. Res. 1(6), 573–581 (2006)

    Article  Google Scholar 

  36. Baldani, J.I.; Baldani, V.L.: History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. Anais da Academia Brasileira de Ciências 77(3), 549–579 (2005)

    Article  Google Scholar 

  37. Döbereiner, J.: Recent advances in associations of diazotrophs with plant roots. Dev. Soil Sci. 18, 229–242 (1989)

    Google Scholar 

  38. Goswami, D.; Parmar, S.; Vaghela, H.; Dhandhukia, P.; Thakker, J.N.: Describing Paenibacillus mucilaginosus strain N3 as an efficient plant growth promoting rhizobacteria (PGPR). Cogent Food Agric. 1(1), 1000714 (2015)

    Google Scholar 

  39. Ma, M.; Wang, Z.; Li, L.; Jiang, X.; Guan, D.; Cao, F.; Chen, H.; Wang, X.; Shen, D.; Du, B.: Complete genome sequence of Paenibacillus mucilaginosus 3016, a bacterium functional as microbial fertilizer. J. Bacteriol. 194(10), 2777–2778 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

I am indebted to Prof. Dr. Ibrahim Isildak for helpful comments regarding this research. The author would like to acknowledge the financial support of Yildiz Technical University Scientific Research Projects Coordinatorship (Project Number: 2016-07-04-GEP01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azade Attar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attar, A. Effects of Azorhizophilus paspali and Paenibacillus mucilaginosus as Biofertilizer and Determination of Nutritional Efficiency by Sensors. Arab J Sci Eng 43, 3477–3484 (2018). https://doi.org/10.1007/s13369-018-3126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3126-1

Keywords

Navigation