Skip to main content

Advertisement

Log in

Segmentation of Ischemic Stroke Lesion in Brain MRI Based on Social Group Optimization and Fuzzy-Tsallis Entropy

  • Research Article - Special Issue - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Stroke is one of the widespread causes of morbidity worldwide and is also the foremost reason for attained disability in human community. Ischemic stroke can be confirmed by investigating the interior brain regions. Magnetic resonance image (MRI) is one of the noninvasive imaging techniques widely adopted in medical discipline to record brain malformations. In this paper, a hybrid semi-automated image processing methodology is proposed to inspect the ischemic stroke lesion using the MRI recorded with flair and diffusion-weighted modality. The proposed approach consists of two sections, namely the preprocessing based on the social group optimization monitored Fuzzy-Tsallis entropy and post-processing technique, which consists of a segmentation algorithm to extract the ISL from preprocessed image in order to estimate the stroke severity and also to plan for further treatment process. The proposed hybrid approach is experimentally investigated using the ischemic stroke lesion segmentation challenge database. This work also presents a detailed investigation among well-known segmentation approaches, like watershed algorithm, region growing technique, principal component analysis, Chan–Vese active contour, and level set approaches, existing in the literature. The results of the experimental work executed using ISLES 2015 challenge dataset confirm that proposed methodology offers superior average values for image similarity indices like Jaccard (78.60%), Dice (88.54%), false positive rate (3.69%), and false negative rate (11.78%). This work also helps to achieve improved value of sensitivity (99.65%), specificity (78.05%), accuracy (91.17%), precision (98.11%), BCR (90.19%), and BER (6.09%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.world-stroke.org/

  2. Usinskas, A.; Gleizniene, R.: Ischemic stroke region recognition based on ray tracing. In: Proceedings of International Baltic Electronics Conference (2006). https://doi.org/10.1109/BEC.2006.311103

  3. Kabir, Y.; Dojat, M.; Scherrer, B.; Forbes, F.; Garbay, C.: Multimodal MRI segmentation of ischemic stroke lesions. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC, Lyon, France (2007). https://doi.org/10.1109/IEMBS.2007.4352610

  4. Tang, F.-H.; Ng, D.K.S.; Chow, D.H.K.: An image feature approach for computer-aided detection of ischemic stroke. Comput. Biol. Med. 41, 529–536 (2011)

  5. Rajini, N.H.; Bhavani, R.: Computer aided detection of ischemic stroke using segmentation and texture features. Measurement 46, 1865–1874 (2013)

    Article  Google Scholar 

  6. Tyan, Y-S.; Wu, M-C.; Chin, C-L.; Kuo, Y-L.; Lee, M-S.; Chang, H-Y.: Ischemic stroke detection system with a computer-aided diagnostic ability using an unsupervised feature perception enhancement method. Int. J. Biomed. Imaging 2014, 12, Article ID 947539 (2014). https://doi.org/10.1155/2014/947539

  7. Yahiaoui, A.F.Z.; Bessaid, Y.: Segmentation of ischemic stroke area from CT brain images. In: International Symposium on Signal, Image, Video and Communications (ISIVC) (2016). https://doi.org/10.1109/ISIVC.2016.7893954

  8. Maier, O.; Wilms, M.; Von der Gablentz, J.; Krämer, U.M.; Münte, T.F.; Handels, H.: Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences. J. Neurosci. Methods 240, 89–100 (2015). https://doi.org/10.1016/j.jneumeth.2014.11.011

    Article  Google Scholar 

  9. Mitra, J.; Bourgeat, P.; Fripp, J.; Ghose, S.; Rose, S.; Salvado, O.; Connelly, A.; Campbell, B.; Palmer, S.; Sharma, G.; Christensen, S.; Carey, L.: Lesion segmentation from multimodal MRI using random forest following ischemic stroke. NeuroImage 98, 324–335 (2014)

    Article  Google Scholar 

  10. Kanchana, R.; Menaka, R.: Computer reinforced analysis for ischemic stroke recognition: a review. Indian J. Sci. Technol. 8(35), 81006 (2015)

    Article  Google Scholar 

  11. Maier, O.; Schröder, C.; Forkert, N.D.; Martinetz, T.; Handels, H.: Classifiers for ischemic stroke lesion segmentation: a comparison study. PLoS ONE 10(12), e0145118 (2015)

    Article  Google Scholar 

  12. Maier, O.; et al.: ISLES 2015—a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017)

    Article  Google Scholar 

  13. Srivastava, A.; Alankrita, A.R.; Raj, A.; Bhateha, V.: Combination of wavelet transform and morphological filtering for enhancement of magnetic resonance images. Commun. Comput. Inf. Sci. 188, 460–474 (2011)

    Google Scholar 

  14. Thanaraj, P.; Parvathavarthini, B.: Multichannel interictal spike activity detection using time–frequency entropy measure. Australas. Phys. Eng. Sci. Med. 40(2), 413–425 (2017)

    Article  Google Scholar 

  15. Thanaraj, P.; Roshini, M.; Balasubramanian, P.: Integration of multivariate empirical mode decomposition and independent component analysis for fetal ECG separation from abdominal signals. Technol. Health Care 24(6), 783–794 (2016)

    Article  Google Scholar 

  16. Kamalanand, K.; Jawahar, P.M.: Coupled jumping frogs/particle swarm optimization for estimating the parameters of three dimensional HIV model. BMC Infect. Dis. 12(1), P82 (2012)

    Article  Google Scholar 

  17. Kamalanand, K.; Jawahar, P.M.: Prediction of human immunodeficiency virus-1 viral load from CD4 cell count using artificial neural networks. J. Med. Imaging Health Inform. 5(3), 641–646 (2015)

    Article  Google Scholar 

  18. Balan, N.S.; Kumar, A.S.; Raja, N.S.M.; Rajinikanth, V.: Optimal multilevel image thresholding to improve the visibility of Plasmodium sp. in blood smear images. Adv. Intell. Syst. Comput. 397, 563–571 (2016)

    Google Scholar 

  19. Lakshmi, V.S.; Tebby, S.G.; Shriranjani, D.; Rajinikanth, V.: Chaotic cuckoo search and Kapur/Tsallis approach in segmentation of T. cruzi from blood smear images. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 14(CIC 2016), 51–56 (2016)

    Google Scholar 

  20. Mostafa, A.; Hassanien, A.E.; Houseni, M.; et al.: Liver segmentation in MRI images based on whale optimization algorithm. Multimed. Tools. Appl. (2017). https://doi.org/10.1007/s11042-017-4638-5

    Google Scholar 

  21. Mostafa, A.; Hassanien, A.E.; Hefny, H.A.: Grey wolf optimization-based segmentation approach for abdomen CT liver images. In: Handbook of Research on Machine Learning Innovations and Trends, pp. 562–581 (2017). https://doi.org/10.4018/978-1-5225-2229-4.ch024

  22. Rajinikanth, V.; Satapathy, S.C.; Fernandes, S.L.; Nachiappan, S.: Entropy based segmentation of tumor from brain MR images—a study with teaching learning based optimization. Pattern Recognit. Lett. 94, 87–94 (2016)

    Article  Google Scholar 

  23. Bresson, X.; Esedoḡlu, S.; Vandergheynst, P.; Thiran, J.-P.; Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  24. Chan, T.F.; Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  25. Chan, T.F.; Vese, L.A.: Active contour and segmentation models using geometric PDE’s for medical imaging. In: Geometric Methods in Bio-medical Image Processing, pp. 63–75 (2002). https://doi.org/10.1007/978-3-642-55987-7_4

  26. Li, C.; Xu, C.; Gui, C.; Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shih, F.Y.; Cheng, S.: Automatic seeded region growing for color image segmentation. Image Vis. Comput. 23, 877–886 (2005)

    Article  Google Scholar 

  28. Roerdink, J.B.T.M.; Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Inf. 41, 187–228 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Chaddad, A.; Tanougast, C.: Quantitative evaluation of robust skull stripping and tumor detection applied to axial MR images. Brain Inf. 3(1), 53–61 (2016)

    Article  Google Scholar 

  30. Lu, H.; Kot, A.C.; Shi, Y.Q.: Distance-reciprocal distortion measure for binary document images. IEEE Signal Process. Letter. 11(2), 228–231 (2004)

    Article  Google Scholar 

  31. Moghaddam, R.F.; Cheriet, M.: A multi-scale framework for adaptive binarization of degraded document images. Pattern Recognit. 43(6), 2186–2198 (2010)

    Article  MATH  Google Scholar 

  32. Sokolova, M.; Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)

    Article  Google Scholar 

  33. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Cerebral infarction database (Case Courtesy of Dr. Ahmed Abd Rabou, Radiopaedia.org, rID: 25281)

  35. Sub-acute middle cerebral artery infarct database (Case Courtesy of Dr. David Cuete, Radiopaedia.org, rID: 35732)

  36. ISLES 2015 (http://www.isles-challenge.org)

  37. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  38. Grgic, S.; Grgic, M.; Mrak, M.: Reliability of objective picture quality measures. J. Electr. Eng. 55(1–2), 3–10 (2004)

    Google Scholar 

  39. Satapathy, S.C.; Raja, N.S.M.; Rajinikanth, V.; Ashour, A.S.; Dey, N.: Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput. Appl. (2016). https://doi.org/10.1007/s00521-016-2645-5

    Google Scholar 

  40. Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  41. ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php)

  42. Tang, Y.; Di, Q.; Guan, X.; Liu, F.: Threshold selection based on Fuzzy Tsallis entropy and particle swarm optimization. NeuroQuantology 6(4), 412–419 (2008)

    Google Scholar 

  43. Sadek, S.; Al-Hamadi, A.: Entropic image segmentation: a fuzzy approach based on Tsallis entropy. Int. J. Comput. Vis. Signal Process. 5(1), 1–7 (2015)

    Google Scholar 

  44. Sarkar, S.; Das, S; Paul, S.; Polley, S.; Burman, R.; Chaudhuri, S.S.: Multi-level image segmentation based on fuzzy-Tsallis entropy and differential evolution. In: IEEE International Conference on Fuzzy Systems (FUZZ) (2013). https://doi.org/10.1109/FUZZ-IEEE.2013.6622406

  45. Sarkar, S.; Paul, S.; Burman, R.; Das, S.; Chaudhuri, S.S.: A fuzzy entropy based multi-level image thresholding using differential evolution. Lecture Notes in Computer Science, vol. 8947, pp. 386–395 (2014)

  46. Anusuya, V.; Latha, P.: A novel nature inspired Fuzzy Tsallis entropy segmentation of magnetic resonance images. Neuroquantology 12(2), 221–229 (2014)

    Google Scholar 

  47. Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52(1), 479–487 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  48. Satapathy, S.; Naik, A.: Social group optimization (SGO): a new population evolutionary optimization technique. Complex Intell. Syst. 2(3), 173–203 (2016)

    Article  Google Scholar 

  49. Naik, A.; Satapathy, S.C.; Ashour, A.S.; Dey, N.: Social group optimization for global optimization of multimodal functions and data clustering problems. Neural Comput. Appl. (2016). https://doi.org/10.1007/s00521-016-2686-9

    Google Scholar 

  50. Houhou, N.; Thiran, J.-P.; Bresson, X.: Fast texture segmentation based on semi-local region descriptor and active contour. Numer. Math. Theory Methods Appl. 2(EPFL–ARTICLE–140431), 445–468 (2009)

    MathSciNet  MATH  Google Scholar 

  51. Qian, X.; Wang, J.; Guo, S.; Li, Q.: An active contour model for medical image segmentation with application to brain CT image. Med. Phys. 40(2), 021911 (2013)

    Article  Google Scholar 

  52. Chack, S.; Sharma, P.: An improved region based active contour model for medical image segmentation. Int. J. Signal Process. Image Process. Pattern Recognit. 8(1), 115–124 (2015)

    Google Scholar 

  53. Liu, T.; Xu, H.; Jin, W.; Liu, Z.; Zhao, Y.; Tian, W.: Medical image segmentation based on a hybrid region-based active contour mode. Comput. Math. Methods Med. 2014, 10, Article ID 890725 (2014). https://doi.org/10.1155/2014/890725

  54. Zhou, S.; Wang, J.; Zhang, S.; Liang, Y.; Gong, Y.: Active contour model based on local and global intensity information for medical image segmentation. Neurocomputing 186, 107–118 (2016)

    Article  Google Scholar 

  55. Salman, N.: Image segmentation and edge detection based on Chan–Vese algorithm. Int. Arab J. Inf. Technol. 3(1), 69–74 (2006)

    MathSciNet  Google Scholar 

  56. Mumford, D.; Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  57. Lankton, S.; Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Huang, C.; Zeng, L.: An active contour model for the segmentation of images with intensity inhomogeneities and bias field estimation. PLoS ONE 10(4), e0120399 (2015). https://doi.org/10.1371/journal.pone.0120399

    Article  Google Scholar 

  59. Malladi, R.; Sethian, A.; Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995). https://doi.org/10.1109/34.368173

    Article  Google Scholar 

  60. Vaishnavi, G.; Jeevananthan, K.; Begum, S.R.; Kamalanand, K.: Geometrical analysis of schistosome egg images using distance regularized level set method for automated species identification. J. Bioinform. Intell. Control 3, 147–152 (2014). https://doi.org/10.1166/jbic.2014.1080

    Article  Google Scholar 

  61. Malek, A.A.; et al.: Seed point selection for seed-based region growing in segmenting microcalcifications. In: International Conference on Statistics in Science, Business, and Engineering (ICSSBE) (2012). https://doi.org/10.1109/ICSSBE.2012.6396580

  62. Malek, A.A.; et al.: Region and boundary segmentation of microcalcifications using seed-based region growing and mathematical morphology. Procedia Soc. Behav. Sci. 8, 634–639 (2010)

    Article  Google Scholar 

  63. Dubey, R.B.; Hanmandlu, M.; Gupta, S.K.: Region growing for MRI brain tumor volume analysis. Indian J. Sci. Technol. 2, 9 (2009)

    Google Scholar 

  64. Hore, S.; Chakraborty, S.; Chatterjee, S.; Dey, N.; Ashour, A.S.; Chung, L.V.; Le, D.-N.: An integrated interactive technique for image segmentation using stack based seeded region growing and thresholding. Int. J. Electr. Comput. Eng. (IJECE) 6(6), 2773–2780 (2016)

    Article  Google Scholar 

  65. Kaleem, M.; Sanaullah, M.; Hussain, M.A.; Jaffar, M.A.; Choi, T.-S.: Segmentation of brain tumor tissue using marker controlled watershed transform method. Commun. Comput. Inf. Sci. 281, 222–227 (2012)

    Google Scholar 

  66. Deng, G.; Li, Z.: An improved marker-controlled watershed crown segmentation algorithm based on high spatial resolution remote sensing imagery. Lecture Notes in Electrical Engineering, vol. 128, pp. 567–572 (2012)

  67. Bhateja, V.; Patel, H.; Krishn, A.; Sahu, A.; Lay-Ekuakille, A.: Multimodal medical image sensor fusion framework using cascade of wavelet and contourlet transform domains. IEEE Sens. J. 15(12), 6783–6790 (2015)

    Article  Google Scholar 

  68. Bhateja, V.; Moin, A.; Srivastava, A.; le Bao, N.; Lay-Ekuakille, A.; Le, D.N.: Multispectral medical image fusion in Contourlet domain for computer based diagnosis of Alzheimer’s disease. Rev. Sci. Instrum. 87(7), 074303 (2016). https://doi.org/10.1063/1.4959559

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajinikanth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajinikanth, V., Satapathy, S.C. Segmentation of Ischemic Stroke Lesion in Brain MRI Based on Social Group Optimization and Fuzzy-Tsallis Entropy. Arab J Sci Eng 43, 4365–4378 (2018). https://doi.org/10.1007/s13369-017-3053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-3053-6

Keywords

Navigation