Skip to main content
Log in

Study on Deterioration of Strength Parameters of Sandstone Under the Action of Dry–Wet Cycles in Acid and Alkaline Environment

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In order to study the deterioration of strength parameters of sandstone under the action of dry–wet cycles in acid and alkaline environment, laboratory tests were conducted on the sandstone specimens for 1, 3, 6 and 10 dry–wet cycles in the solutions with a pH value of 4, 7 and 9, respectively. With the strength data recorded after each cycle, the Mohr–Coulomb strength criterion parameters and the Hoek–Brown strength criterion parameters were obtained. First, the rock deterioration was briefly analyzed. Then, the failure envelopes and the failure surface on the \(\pi \) plane at different pH values after different cycles were graphed. The results show that the parameters decrease with the increase in dry–wet cycles. The deterioration is most serious when the number of cycles is small, and then becomes moderate. In addition, the deterioration coefficient of the sandstone is the largest in acidic environment (\(\hbox {pH}=4\)), followed by that in alkaline environment (\(\hbox {pH}=9\)) and that in neutral environment (\(\hbox {pH}=7\)). The deterioration effects of drying and wetting on the following parameters are as follows: fitting compressive strength > cohesion > material constant > internal friction angle. When the pH value of the soaking solution changes from 7 to 4, the deterioration coefficients of the fitting compressive strength and cohesion rise by 30%, while those of the material constant and internal friction angle rise by 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wong, L.N.Y.; Maruvanchery, V.; Liu, G.: Water effects on rock strength and stiffness degradation. Acta Geotech. 11(4), 1–25 (2015)

  2. Nara, Y.; Morimoto, K.; Yoneda, T.; Kaneko, K.; et al.: Effect of humidity on fracture toughness in sandstone. J. MMIJ 126(1/2), 10–17 (2010)

    Article  Google Scholar 

  3. Naghadehi, M.Z.; Torabi, S.R.; Khalokakaie, R.: The influence of moisture on sandstone properties in Iran. Geotech. Eng. 163(2), 91–99 (2010)

    Article  Google Scholar 

  4. Verstrynge, E.; Adriaens, R.; Elsen, J.; Balen, K.V.: Multi-scale analysis on the influence of moisture on the mechanical behavior of ferruginous sandstone. Constr. Build. Mater. 54(54), 78–90 (2014)

    Article  Google Scholar 

  5. Verstrynge, E.; Pyka, G.; Wevers, M.; et al.: The influence of moisture on the mechanical behaviour of sandstone assessed by means of micro-computed tomography. J. Mater. Eng. 53(10), 15–19 (2009)

    Google Scholar 

  6. Hua, W.; Dong, S.; Li, Y.; et al.: Effect of cyclic wetting and drying on the pure mode II fracture toughness of sandstone. Eng. Fract. Mech. 153, 143–150 (2016)

    Article  Google Scholar 

  7. Hua, W.; Dong, S.; Li, Y.; et al.: The influence of cyclic wetting and drying on the fracture toughness of sandstone. Int. J. Rock Mech. Min. Sci. 78, 331–335 (2015)

    Google Scholar 

  8. Vergara, M.R.; Triantafyllidis, T.: Swelling behavior of volcanic rocks under cyclic wetting and drying. Int. J. Rock Mech. Min. Sci. 80, 231–240 (2015)

    Google Scholar 

  9. Wang, L.L.; Bornert, M.; Héripréa, E.; Yang, D.S.; Chanchole, S.: Irreversible deformation and damage in argillaceous rocks induced by wetting/drying. J. Appl. Geophys. 107, 108–118 (2014)

    Article  Google Scholar 

  10. Zhang, B.Y.; Zhang, J.H.; Sun, G.L.: Deformation and shear strength of rockfill materials composed of soft siltstones subjected to stress, cyclical drying/wetting and temperature variations. Eng. Geol. 190, 87–97 (2015)

    Article  Google Scholar 

  11. Heggheim, T.; Madland, M.V.; Risnes, R.; et al.: A chemical induced enhanced weakening of chalk by seawater. J. Pet. Sci. Eng. 46, 171–184 (2005)

    Article  Google Scholar 

  12. Ciantia, M.O.; Castellanza, R.; Crosta, G.B.: Effects of mineral suspension and dissolution on strength and compressibility of soft carbonate rocks. Eng. Geol. 184, 1–18 (2015)

    Article  Google Scholar 

  13. Ciantia, M.O.; Castellanza, R.; Prisco, C.: Experimental study on the water-induced weakening of calcarenites. Rock Mech. Rock Eng. 48, 441–461 (2015)

    Article  Google Scholar 

  14. Li, N.; Zhu, Y.; Su, B.; Gunter, S.: A chemical damage model of sandstone in acid solution. Int. J. Rock Mech. Min. Sci. 40(2), 243–249 (2003)

    Article  Google Scholar 

  15. Fuller, I.C.; Riedler, R.A.; Bell, R.; et al.: Landslide-driven erosion and slope-channel coupling in steep forested terrain, Ruahine Ranges, New Zealand, 1946–2011. Catena 142, 252–268 (2016)

    Article  Google Scholar 

  16. Jiang, L.-C.; Chen, J.-S.; Wu, A.-X.: Erosion characteristic of slope sandstone soaking in acid mine drainage. J. Cent. South Univ. Technol. 14(2), 236–242 (2007)

  17. Waragai, T.: The effect of rock strength on weathering rates of sandstone used for Angkor temples in Cambodia. Eng. Geol. 207, 24–35 (2016)

    Article  Google Scholar 

  18. Siedel, H.; Pfefferkorn, S.; Plehwe-Leisen, E.; et al.: Sandstone weathering in tropical climate: results of low-destructive investigations at the temple of Angkor Wat, Cambodia. Eng. Geol. 115(3), 182–192 (2010)

  19. Drucker, D.; Prager, W.: Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 10(2), 157–165 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mogi, K.: Effect of the intermediate principal stress on rock failure. J. Geophys. Res. 72(20), 5 117–5 131 (1967)

    Article  Google Scholar 

  21. Wiebols, G.; Cook, N.: An energy criterion for the strength of rock in Polyaxial compression. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 5(6), 529–549 (1968)

    Article  Google Scholar 

  22. Lade, P.C.: Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. Int. J. Solids Struct. 13(11), 1 019–1 035 (1977)

    Article  MATH  Google Scholar 

  23. Hoek, E.; Brown, E.: Empirical strength criterion for rock masses. J. Geotech. Eng. Div. ASCE 106(9), 1013–1035 (1980)

    Google Scholar 

  24. Hoek, E.: Strength of rock and rock masses. ISRM News 2(2), 4–16 (1994)

    Google Scholar 

  25. Matsuoka, H.; Nakai, T.: Relationship among Tresca, Mises, Mohr–Coulomb and Matsuoka–Nakai failure criteria. Soils Found. 25(4), 123–128 (1985)

    Article  Google Scholar 

  26. Sheorey, P.R.: Empirical Rock Failure Criteria. A.A. Balkema, Rotterdam (1997)

    Google Scholar 

  27. Benz, T.; Schwab, R.; Kauther, R.A.; et al.: A Hoek–Brown criterion with intrinsic material strength factorization. Int. J. Rock Mech. Min. Sci. 45(2), 210–222 (2008)

    Article  Google Scholar 

  28. You, M.: True triaxial strength criteria for rock. Int. J. Rock Mech. Min. Sci. 46(1), 115–127 (2009)

    Article  Google Scholar 

  29. Lee, Y.-K.; Pietruszczak, S.; Choi, B.-H.: Failure criteria for rocks based on smooth approximations to Mohr–Coulomb and Hoek–Brown failure functions. Int. J. Rock Mech. Min. Sci. 56, 146–160 (2012)

  30. Zhang, L.: A generalized three-dimensional Hoek-Brown strength criterion. Rock Mech. Rock Eng. 41, 893–915 (2008)

    Article  Google Scholar 

  31. Singh, M.; Singh, B.: Modified Mohr–Coulomb criterion for non-linear triaxial and polyaxial strength of jointed rocks. Int. J. Rock Mech. Min. Sci. 51, 43–52 (2012)

    Article  Google Scholar 

  32. Zhou, X.P.; Li, J.L.: Hoek–Brown criterion applied to circular tunnel using elastoplasticity and in situ axial stress. Theor. Appl. Fract. Mech. 56, 95–103 (2011)

    Article  Google Scholar 

  33. Singh, M.; Raj, A.; Singh, B.: Modified Mohr–Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks. Int. J. Rock Mech. Min. Sci. 48, 546–55 (2011)

    Article  Google Scholar 

  34. Sofianos, A.I.: Tunnelling Mohr–Coulomb strength parameters for rock masses satisfying the generalized Hoek–Brown criterion International. J. Rock Mech. Min. Sci. 40, 435–440 (2003)

    Article  Google Scholar 

  35. Jiang, X.; Cui, P.; Liu, C.: A chart-based seismic stability analysis method for rock slopes using Hoek–Brown failure criterion. Eng. Geol. 209, 196–208 (2016)

    Article  Google Scholar 

  36. ISRM: The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006. In: Ulusay, R., Hudson, J.A. (eds.) Suggested methods prepared by the commission on testing methods, International Society for Rock Mechanics, compilation arranged by the ISRM. Turkish National Group, Ankara, Turkey (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinrong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, W., Liu, X. & Fu, Y. Study on Deterioration of Strength Parameters of Sandstone Under the Action of Dry–Wet Cycles in Acid and Alkaline Environment. Arab J Sci Eng 43, 335–348 (2018). https://doi.org/10.1007/s13369-017-2870-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2870-y

Keywords

Navigation