Skip to main content
Log in

Kinetic and Equilibrium Studies of Cr(VI), Cu(II) and Pb(II) Removal from Aqueous Solution Using Red Mud, a Low-Cost Adsorbent

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present work utilized raw red mud and hydrochloric acid-modified red mud (RMA) as adsorbents for Cr(VI), Cu(II) and Pb(II) removal from aqueous solution. pH, X-ray fluorescence, infrared spectrometry and porosity characteristics using gas adsorption were performed for characterization of adsorbents. Batch experiments were conducted to determine the influence of solution pH, temperature, initial metal ion concentration and adsorbent dose on the kinetics (0–120 min) of the metal ions removal. Equilibrium data were analyzed using Langmuir and Freundlich isotherms. Monolayer adsorption capacities of raw and acid-modified adsorbents were found to be 9.615 and 9.542 for chromium, 78.125 and 77.519 for copper and 52.083 and \(79.365\,\upmu \hbox {mol g}^{-1}\) for lead, respectively. Acid activation has only marginal influence on the monolayer capacity of copper and chromium adsorption, but influences lead adsorption. Pseudo-second-order kinetic model suited well than other models like pseudo-first-order and intraparticle diffusion models examined. Equilibrium was attained in 10 min for chromium and 20 and 40 min on average for copper and lead, respectively, at all the conditions used in the study. The order of metal ions interaction with the surface as well as the rate of uptake was chromium > copper > lead. These findings revealed that raw and RMA serve as effective adsorbents for the removal of Cr(VI), Cu(II) and Pb(II) from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RM:

Red mud

RMA:

Acid-modified red mud

XRF:

X-Ray fluorescence

IR:

Infrared spectroscopy

\({q}_{{t}}\) :

Amount of metal ion adsorbed at time \(t(\upmu \hbox {mol/g}\))

\(C_0\) :

Initial metal ion concentration (\(\upmu \hbox {mol/L}\))

\(C_\mathrm{e}\) :

Metal ion concentration in solution at equilibrium (\(\upmu \hbox {mol/L}\))

C :

Intraparticle diffusion model intercept

\({k}_{1}\) :

Pseudo-first-order constant (min\(^{-1}\))

\({k}_{2}\) :

Pseudo-second-order constant (\(\hbox {g}/\upmu \hbox {mol/min}\))

\({K}_{\mathrm{F}}\) :

Freundlich constant (\(\upmu \hbox {mol/g})/(\upmu \hbox {mol/L})^{1/\mathrm{n}}\)

\({k}_{\mathrm{id}}\) :

Intraparticle diffusion rate constant (\(\upmu \hbox {mol/g}/\hbox {min}^{1/2})\)

m :

Amount of adsorbent (g)

n :

Adsorption intensity

\({q}_\mathrm{m}\) :

Monolayer adsorption capacity (\(\upmu \hbox {mol/g}\))

qe:

Amount of metal ion ions adsorbed per unit mass of adsorbent (\(\upmu \hbox {mol/g}\))

qe,plot:

Calculated equilibrium amount adsorbed per unit mass of adsorbent (\(\upmu \hbox {mol/g}\))

qe,exp’t:

Experimental equilibrium amount adsorbed per unit mass of adsorbent (\(\upmu \hbox {mol/g}\))

b :

Langmuir equilibrium coefficient (\(\hbox {L g}^{-1})\)

\({R}^{2}\) :

Coefficient of determination of regression

\({R}_{{L}}\) :

Separation factor

T :

Temperature (\({^{\circ }}\hbox {C}\))

V :

Volume of the solution (L)

w/w :

Weight percent

References

  1. World Health Organization: Health in water resources development. (2007). Available at: http://www.who.int/docstore/watersanitationhealth/vector/waterresources.htm

  2. United Nations World Water Development Report, UNESCO: Water for people water for life. (2003). Available at: http://www.unesco.org/water/wwap/wwdr1/exsummary/index.shtml

  3. Kanamadi, R.D.; Ahalya, N.; Ramachandra, T.V.: Biosorption of heavy metals by low cost adsorbents. CESTechnical Report: 112, Energy and Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560 012 (2006)

  4. Nas, S.M.; Okbah, M.A.; Kasem, S.M.: Environmental assessment of heavy metal pollution in bottom sediments of Aden Port, Yemen. Int. J. Oceans Oceanogr. 1, 99–109 (2006)

    Google Scholar 

  5. Singh, J.; Kalamdhad, A.S.: Effects of heavy metals on soil, plants, human health and aquatic life. Int. J. Res. Chem. Environ. 1, 15–21 (2011)

    Google Scholar 

  6. Di Benedetto, M.: Les metaux lourds, methodes spectrometriques d’analyse. Génie des Procédés, Ecole Nationale Supérieure des Mines de Saint-Etienne (1997)

  7. Gebrekidan, M.; Samuel, Z.: Concentration of Heavy Metals in Drinking Water from Urban Areas of the Tigray Region, Northern Ethiopia, vol. 3, pp. 105–121. CNCS, Mekelle University ISSN:2220-184X (2011)

  8. UNESCO: United Nations, Economic and Social Commission for Western Asia Waste-Water Treatment Technologies: A General Review (2003) http://www.igemportal.org/Resim/Wastewater%20Treatment%20Technologies_%20A%20general%20rewiev.pdf. Accessed 8 Aug 2017

  9. Ozdesa, D.; Gundogdua, A.; Kemera, B.; Durana, C.; Senturka, H.B.; Soylakb, M.: Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study. J. Hazard. Mater. 166, 1480–1487 (2009)

    Article  Google Scholar 

  10. Katsumataa, H.; Kanecoa, S.; Inomataa, K.; Itoh, K.; Funasaka, K.M.; Suzukid, T.; Kiyohisa, O.: Removal of heavy metals in rinsing wastewater from plating factory by adsorption with economical viable materials. J. Environ. Manage. 69, 187–191 (2003)

    Article  Google Scholar 

  11. Ali, I.: Water treatment by adsorption columns: evaluation at ground level. Sep. Purif. Rev. 43, 175–205 (2014)

    Article  Google Scholar 

  12. Kurniawan, T.A.; Chan, G.Y.S.; Wai-hung, L.; Sandhya, B.: Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals, review. Sci. Total Environ. 366, 409–426 (2006)

    Article  Google Scholar 

  13. Resolutions Adopted by the Conference: Resolution 1, annexes I and II. Report of the United Nations Conference on Environment and Development, Rio de Janeiro June 3–14, and Corrigenda. United Nations publication, Sales No. E.93.I.8, vol. 1 (1992)

  14. Momo, M.N.; Tematio, P.; Yemefack, M.: Multi-scale organization of the Doumbouo-Fokoué bauxites ore deposits (West Cameroon): implication to the landscape lowering. Open J. Geol. 2, 14–24 (2012)

    Article  Google Scholar 

  15. Sushil, S.; Batra, V.S.: Catalytic applications of red mud, an aluminium industry waste: a review. Appl. Catal. B Environ. 81, 64–77 (2008)

    Article  Google Scholar 

  16. Agatzini-Leonardou, S.; Oustadakis, P.; Tsakiridis, P.E.; Markopoulos, Ch: Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure. J. Hazard. Mater. 157, 579–586 (2008)

    Article  Google Scholar 

  17. Briger, P.L.: Hydromine’s Project Development Program in Cameroon, U. S.–Africa Infrastructure Conference Washington, D.C. Report (2010)

  18. Brunori, C.; Cremisini, C.; Massanisso, P.; Pinto, V.; Torricelli, L.: Reuse of a treated red mud bauxite waste: studies on environmental compatibility. J. Hazard. Mater. 117, 55–63 (2005)

    Article  Google Scholar 

  19. Wang, S.; Ang, H.M.; Tadé, M.O.: Review: novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere 72, 1621–1635 (2008)

    Article  Google Scholar 

  20. Vilar, A.B.V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R.: A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater. Environ. Technol. 32, 231–249 (2011)

    Article  Google Scholar 

  21. Sutar, H.; Mishra, S.C.; Sahoo, S.K.; chakraverty, A.P.; Maharana, H.S.: Progress of red mud utilization: an overview. Am. Chem. Sci. J. 4, 255–279 (2014)

    Article  Google Scholar 

  22. Sieliechi, J.M.; Noumi, G.B.; Fadimatou, M.; Ali, A.; Kapseu, C.: Speciation of heavy metals in sediments sampled from different pollution sources of Lake Dang, Ngaoundere-Cameroon. Int. J. Environm. Prot. 2, 10–19 (2013)

    Google Scholar 

  23. Ekenguele, N.L.; Baussand, P.; Ekodeck, G.E.: Heavy metals accumulation in sediment cores of the municipal Lake of Yaounde, Cameroon. Glob. J. Environ. Res. 6, 100–110 (2012)

    Google Scholar 

  24. Kayalto, B.; Mbofung, C.M.F.; Tchatchueng, J.B.; Ahmed, A.: Contribution à l’évaluation de la contamination par les métaux lourds de trois espèces de poissons, des sédiments et des eaux du Lac Tchad. Int. J. Biol Chem. Sci. 8, 468–480 (2014)

    Article  Google Scholar 

  25. Fonge, B.A.; Tening, A.S.; Egbe, A.E.; Awo, E.M.; Focho, D.A.; Oben, P.M.; Asongwe, G.A.; Zoneziwoh, R.M.: Fish (Arius heudelotii Valenciennes, 1840) as bioindicator of heavy metals in Douala Estuary of Cameroon. Afr. J. Biotechnol. 10, 16581–16588 (2011)

    Article  Google Scholar 

  26. Komlóssy, G.; Morrison, W.B.: Comparison of bauxite resources—geo-economical considerations. J. Earth Sci. 2, 10–19 (2010)

    Google Scholar 

  27. Tsamo, C.; Kofa, G.P.; Kamga, R.: Decreasing yield and alumina content of red mud by optimization of the bauxite processing process. Int. J. Metall. Eng. 6, 1–9 (2017). doi:10.5923/j.ijmee.20170601.01

    Google Scholar 

  28. Saranya, N.; Nakkeeran, E.; Shrihari, S.; Selvaraju, N.: Equilibrium and kinetic studies of hexavalent chromium removal using a novel biosorbent: Ruellia patula Jacq. Arab. J. Sci. Eng. 42, 1545–1557 (2017). doi:10.1007/s13369-017-2416-3

    Article  Google Scholar 

  29. Gräfe, M.; Power, G.; Klauber, C.: Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy 108, 60–79 (2011)

    Article  Google Scholar 

  30. Snars, K.; Gilkes, R.J.: Evaluation of bauxite residues (red muds) of different origins for environmental applications. Appl. Clay Sci. 46, 13–20 (2009)

    Article  Google Scholar 

  31. Sahu, R.C.; Patel, R.; Ray, B.C.: Utilization of \(\text{ CO }_{2}\)-neutralized red mud for removal of arsenate from aqueous solutions. J. Hazard. Mater. 179, 1007–1013 (2010)

    Article  Google Scholar 

  32. Castaldi, P.; Silvetti, M.; Santona, L.; Enzo, S.; Melis, P.: XRD, FTIR and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals. Clays Clay Miner. 56, 461–469 (2008)

    Article  Google Scholar 

  33. Mistry, B.D.: A Handbook of Spectroscopic Data Chemistry (UV, JR, PMR, JJCNMR and Mass Spectroscopy). Oxford Book Company, Jaipur (2009)

    Google Scholar 

  34. Vo-Dinh, T.; Spellicy, R.L.: Pollutant emission monitoring using QC laser-based mid-IR sensors. In: Proceedings of SPIE on Water, Ground and Air Pollution Monitoring and Remediation, vol. 4199 (2001)

  35. Lefevre, G.: In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides. Adv. Colloid Interface Sci. 107, 109–123 (2004)

    Article  Google Scholar 

  36. Emdadi, L.: Characterizing Porous Materials and Powders. University of Maryland, College Park, MD (2013)

    Google Scholar 

  37. Quantachrome Instruments: Physisorption Methods and Techniques, ppt (1992) http://slideplayer.com/slide/1710170/. Accessed 8 Aug 2017

  38. Imamoglu, M.; Tekir, O.: Removal of copper(II) and lead(II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination 228, 108–113 (2008)

    Article  Google Scholar 

  39. Dursun, S.; Guclu, D.; Berktay, A.; Guner, T.: Removal of chromate from aqueous system by activated red-mud. Asian J. Chem. 20, 6473–6478 (2008)

    Google Scholar 

  40. Rajkumar, M.; Nagendran, N.; Sasikumar, S.S.: Removal of trivalent chromium from wastewater using red mud. Ind. J. Environ. Prot. 21, 97–100 (2001)

    Google Scholar 

  41. Nadaroglu, H.; Kalkan, E.; Demir, N.: Removal of copper from aqueous solution using red mud. Desalination 251, 90–95 (2010)

    Article  Google Scholar 

  42. Vaclavikova, M.; Misaelides, P.; Gallios, G.; Jakabsky, S.; Hredzak, S.: Removal of cadmium, zinc, copper and lead by red mud, an iron oxides containing hydrometallurgical waste. Stud. Surf. Sci. Catal. 155, 517–525 (2005)

    Article  Google Scholar 

  43. Gupta, S.S.; Bhattacharyya, K.G.: Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. J. Environ. Manage. 87, 46–58 (2008)

    Article  Google Scholar 

  44. Gupta, S.S.; Bhattacharyya, K.G.: Interaction of metal ions with clays: I. A case study with Pb(II). Appl. Clay Sci. 30, 199–208 (2005)

    Article  Google Scholar 

  45. Echeverria, J.; Indurain, J.; Churio, E.; Garrido, J.: Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of Ni on illite. Colloids Surf. A Physicochem. Eng. Asp. 218, 175–187 (2003)

    Article  Google Scholar 

  46. Zhao, L.; Qin, H.; Wu, R.; Zou, H.: Review: recent advances of mesoporous materials in sample preparation. J. Chromatogr. A 1228, 193–204 (2012)

    Article  Google Scholar 

  47. Wells, A.F.: Structural Inorganic Chemistry, 5th edn, p. 1288. Clarendon Press, Oxford (1984) (metallic radii for 12-coordination); Huheey, pp. 292 (covalent radii for nonmetals); R.D. Shannon, Acta Crystallogr., Sect. A: Found. Crystallogr., vol. 32, p. 751 (1976) (ionic radii for 6-coordination)

  48. Ionic radius. https://www.saylor.org/site/wp-content/uploads/.../Ionic-Radius.pdf. Accessed 30 June 2017

  49. Gupta, V.K.; Gupta, M.; Sharma, S.: Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Res. 35, 1125–1134 (2000)

    Article  Google Scholar 

  50. Horsfall Jr., M.; Abia, A.A.; Spiff, A.I.: Kinetic studies on the adsorption of \(\text{ Cd }^{2+}\), \(\text{ Cu }^{2+}\), \(\text{ Zn }^{2+}\) ions from aqueous solutions by cassava (Manihot esculenta Cranz) tuber bark waste. Bioresour. Technol. 97, 283–291 (2006)

    Article  Google Scholar 

  51. Bhattacharyya, K.G.; Gupta, S.S.: Pb(II) uptake by kaolinite and montmorillonite in aqueous medium: influence of acid activation of the clays. Colloids Surf. A Physicochem. Eng. Asp. 277, 191–200 (2006)

    Article  Google Scholar 

  52. Shukla, A.; Zhang, Y.H.; Dubey, P.; Margrave, J.L.; Shukla, S.S.: The role of sawdust in the removal of unwanted materials from water. J. Hazard. Mater. B95, 137–152 (2002)

    Article  Google Scholar 

  53. Tor, A.; Cengeloglu, Y.: Removal of congo red from aqueous solution by adsorption onto acid activated red mud. J. Hazard. Mater. B138, 409–415 (2006)

    Article  Google Scholar 

  54. Sujana, M.G.; Thakur, R.S.; Rao, S.B.: Removal of fluoride from aqueous solution by using alum sludge. J. Colloid Interface Sci. 206, 94–101 (1998)

    Article  Google Scholar 

  55. Bishnoi, N.R.; Bajaj, M.; Sharma, N.; Gupta, A.: Adsorption of Cr(VI) on activated rice husk carbon and activated alumina. Bioresour. Technol. 91, 305–307 (2004)

    Article  Google Scholar 

  56. Mehrotra, A.; Gopal, K.; Seth, P.K.: Annual Report VIO Hyderabad State. Indian Council of Agriculture Research, ICAR, New Delhi (1999)

  57. Saravanan, D.; Sudha, P.N.: Batch adsorption studies for the removal of copper from wastewater using natural biopolymer. Int. J. ChemTech Res. 6, 3496–3508 (2014)

    Google Scholar 

  58. Han, S.W.; Kim, D.K.; Hwang, I.G.; Bae, J.H.: Development of pellet-type adsorbents for removal of heavy metal ions from aqueous solutions using red mud. J. Ind. Eng. Chem. 8, 120–125 (2002)

    Google Scholar 

  59. Pradhan, J.; Das, S.N.; Thakur, R.S.: Adsorption of hexavalent chromium from aqueous solution by using activated red mud. J. Colloid Interface Sci. 217, 137–141 (1999)

    Article  Google Scholar 

  60. Apak, R.; Tütem, E.; Hügül, M.; Hizal, J.: Heavy metal cation retention by unconventional sorbents (red muds and fly ashes). Water Res. 32, 430–440 (1998)

    Article  Google Scholar 

  61. Zhu, C.; Luan, Z.; Wang, Y.; Shan, X.: Removal of cadmium from aqueous solutions by adsorption on granular red mud (GRM). Sep. Purif. Technol. 57, 161–169 (2007)

    Article  Google Scholar 

  62. Weber, W. J.; Morris, J. C.: Kinetics of adsorption on carbon from solution. J. Sanitary Eng. Div. 89, 31–60 (1963)

  63. Guo, X.; Zhang, S.; Shan, X.-Q.: Adsorption of metal ions on lignin. J. Hazard. Mater. 151, 134 (2008)

    Article  Google Scholar 

  64. Khan, S.A.; Rehman, R.; Khan, M.A.: Adsorption of chromium(III), chromium(VI) and silver(I) on bentonite. Waste Manage. 15, 271 (1995)

    Article  Google Scholar 

  65. Malliou, E.; Loizidou, M.; Spyrellis, N.: Uptake of lead and cadmium by clinoptilolite. Sci. Total Environ. 149, 139–144 (1994)

    Article  Google Scholar 

  66. Srivastava, S.K.; Tyagi, R.; Pant, N.; Pal, N.: Studies on the removal of some toxic metal ions. Part II: removal of lead and cadmium by montmorillonite and kaolinite. Environ. Technol. Lett. 10, 275–282 (1989)

    Article  Google Scholar 

  67. Chantawong, V.; Harvey, N.W.; Bashkin, V.N.: Adsorption of lead nitrate on Thai Kaolin and ball clay. Asian J Energy Environ. 2, 33–48 (2001)

    Google Scholar 

  68. Yadava, K.P.; Tyagi, B.S.; Singh, V.N.: Effect of temperature on the removal of lead(II) by adsorption on China clay and wollastonite. J. Chem. Technol. Biotechnol. 51, 47–60 (1991)

    Article  Google Scholar 

  69. Gupta, V.K.; Carrott, P.J.M.; Carrott, Ribeiro; Suhas, M.M.L.: Low-cost adsorbents: growing approach to wastewater treatment—a review. Crit. Rev. Environ. Sci. Technol. 39, 783–842 (2009). doi:10.1080/10643380801977610

    Article  Google Scholar 

  70. Kavitha, G.; Sridevi, V.; Chitti Babu, N.: Biosorption of lead from aqueous solution by Gracilaria corticata (red algae) and its statistical analysis using response surface methodology. Int. J. Ind. Chem. Biotechnol. 2, 11–34 (2016). doi:10.21276/ijicab.2016.2.4.2

  71. Vaishya, R.C.; Prasad, S.C.: Adsorption of copper(II) on sawdust. Indian J. Environ. Prot. 11, 284 (1991)

    Google Scholar 

  72. Acemioglu, B.; Samil, A.; Alma, M.H.; Gundogan, R.: Copper(II) removal from aqueous solution by organosolv lignin and its recovery. J. Appl. Polym. Sci. 89, 1537 (2003)

    Article  Google Scholar 

  73. Merdy, P.; Guillon, E.; Aplincourt, M.; Dumonceau, J.; Vezin, H.: Copper sorption on a straw lignin: experiments and EPR characterization. J. Colloid Interface Sci. 245, 24 (2002)

    Article  Google Scholar 

  74. Pandy, K.K.; Prasad, G.; Singh, V.N.: Copper removal from aqueous solution by fly ash. Water Res. 19, 869–873 (1985)

    Article  Google Scholar 

  75. Pandy, K.K.; Prasad, G.; Singh, V.N.: Mixed adsorbents for Cu(II) removal from aqueous solutions. Environ. Technol. Lett. 7, 547–554 (1986)

    Article  Google Scholar 

  76. Schmuhl, R.; Krieg, H.M.; Keizer, K.: Adsorption of Cu(II) and Cr(VI) ions by chitosan: kinetics and equilibrium studies. Water SA 27, 1–7 (2001)

    Google Scholar 

  77. Khan, S.A.; Rehman, R.; Khan, M.A.: Adsorption of chromium(III), chromium(VI), and silver(I) on bentonite. Waste Manage. 15, 271–282 (1995)

    Article  Google Scholar 

  78. Pandy, K.K.; Prasad, G.; Singh, V.N.: Removal of Cr(VI) from aqueous solutions by adsorption on fly ash-wollastonite. J. Chem. Technol. Biotechnol. 34A, 367–374 (1984)

    Google Scholar 

  79. Gupta, G.S.; Prasad, G.; Singh, V.N.: Removal of chrome dye from aqueous solutions by mixed adsorbents: fly ash and coal. Water Res. 24, 45–50 (1990)

    Article  Google Scholar 

  80. Han, I.; Schlautman, M.A.; Batchelor, B.: Removal of hexavalent chromium from groundwater by granular activated carbon. Water Environ. Res. 72, 29–39 (2000)

    Article  Google Scholar 

  81. Namasivayam, C.; Ranganathan, K.: Waste Fe(III)/Cr(III) hydroxide as adsorbent for the removal of Cr(VI) from aqueous solution and chromium plating industry wastewater. Environ. Pollut. 82, 255–261 (1993)

    Article  Google Scholar 

  82. Zhou, Y.; Haynes, R.J.: A comparison of water treatment sludge and red mud as adsorbents of As and Se in aqueous solution and their capacity for desorption and regeneration. Water Air Soil Pollut. 223, 5563–5573 (2012)

    Article  Google Scholar 

  83. Zhang, S.; Liu, C.; Luan, Z.; Peng, X.; Ren, H.; Wang, J.: Arsenate removal from aqueous solutions using modified red mud. J. Hazard. Mater. 152, 486–492 (2008)

  84. Gupta, V.K.; Gupta, M.; Sharma, S.: Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Res. 35, 1125–1134 (2001)

    Article  Google Scholar 

  85. Gupta, V.K.; Sharma, S.: Removal of cadmium and zinc from aqueous solutions using red mud. Environ. Sci. Technol. 36, 3612–3617 (2002)

    Article  Google Scholar 

  86. Gupta, V.K.; Suhas,; Ali, I.; Saini, V.K.: Removal of rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry waste. Ind. Eng. Chem. Res. 43, 1740–1747 (2004)

    Article  Google Scholar 

  87. Namasivayam, C.; Arasi, D.J.S.E.: Removal of congo red from wastewater by adsorption onto waste red mud. Chemosphere 34, 401–417 (1997)

    Article  Google Scholar 

  88. Namasivayam, C.; Yamuna, R.T.; Arasi, D.J.S.E.: Removal of procion orange from wastewater by adsorption on waste red mud. Sep. Sci. Technol. 37, 2421–2431 (2002)

    Article  Google Scholar 

  89. Namasivayam, C.; Yamuna, R.T.; Arasi, D.J.S.E.: Removal of acid violet from wastewater by adsorption on waste red mud. Environ. Geol. 41, 269–273 (2001)

    Article  Google Scholar 

  90. Zhao, Y.; Yue, Q.; Li, Q.; Baoyu Gao, B.; Han, S.; Yu, H.: The regeneration characteristics of various red mud granular adsorbents (RMGA) for phosphate removal using different desorption reagents. J. Hazard. Mater. 182, 309–316 (2010)

    Article  Google Scholar 

  91. Tor, A.; Danaoglu, N.; Arslan, G.; Cengeloglu, Y.: Removal of fluoride from water by using granular red mud: batch and column studies. J. Hazard. Mater. 164, 271–278 (2009)

    Article  Google Scholar 

  92. Evans, K.: The history, challenges, and new developments in the management and use of bauxite residue. J. Sustain. Metall. (2016). doi:10.1007/s40831-016-0060-x

    Google Scholar 

  93. Mayes, W.M.; Burke, I.T.; Gomes, H.I.; Anton, A.D.; Molna, M.; Feigl, V.; Ujaczki, E.: Advances in understanding environmental risks of red mud after the Ajka spill Hungary. J. Sustain Metall. (2016). doi:10.1007/s40831-016-0050-z

    Google Scholar 

  94. Al-Khatib, I.A.; Monou, M.; Zahra, A.S.F.A.; Shaheen, H.Q.; Kassinos, D.: Solid waste characterization, quantification and management practices in developing countries. A case study: Nablus district–Palestine. J. Environ. Manage. 91, 1131–1138 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Tsamo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsamo, C., Djomou Djonga, P.N., Dangwang Dikdim, J.M. et al. Kinetic and Equilibrium Studies of Cr(VI), Cu(II) and Pb(II) Removal from Aqueous Solution Using Red Mud, a Low-Cost Adsorbent. Arab J Sci Eng 43, 2353–2368 (2018). https://doi.org/10.1007/s13369-017-2787-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2787-5

Keywords

Navigation