Skip to main content

Advertisement

Log in

Comparative Study of the Sorption Capacity and Contact Time of Congo Red Removal in a Binary and Singular System

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The objective of the present paper is to remove Congo red (CR) from wastewater onto Barbary fig skin (BFS) using binary sorption system (\(\hbox {CR}/\hbox {Zn}^{++}\)) at ambient temperature and study the variance of contact time and sorption capacity to that of the singular system. The SEM images, the iodine value (436 mg/g) and the specific surface area (\(368.49\,\hbox {m}^{2}/\hbox {g}\)) show that the used sorbent has a high surface area. The characterization of the surface sorbent by \(^{13}\hbox {CNMR}\), energy-dispersive X-ray, FTIR spectroscopy and Boehm titration test shows the availability of carbonyl, carboxyl, ester and hydroxyl functional groups on this surface as. The Boehm titration test indicates the presence of these functions with almost equivalent amounts (acid groups \(=\) 047 meq \(\hbox {g}^{-1}\), basic groups \(=\) 0.52 meq \(\hbox {g}^{-1}\)). The study of the sorption kinetics indicates a gain of 45 min of contact time in the binary system. The sorption isotherms are very well described by the Langmuir model. According to the Langmuir model, the maximum sorption capacity for CR in binary system (\(Q_{\max } = 161.21 \, \hbox {mg}/\hbox {g}\)) is higher than in singular system (\(Q_{\max } = 151.51 \, \hbox {mg}/\hbox {g}\)). These results show that the sorption of CR onto BFS presents a synergistic phenomenon, not competitive sorption in an aqueous solution which already contains \(\hbox {Zn}^{++}\) (multi-solute system \(\hbox {CR}/\hbox {Zn}^{++}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kadrivelu, K.; Kavipriya, M.; Karthika, C.; Radhika, M.; Vennilamani, N.; Pattabhi, S.: Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour. Technol. 87(1), 129–32 (2003)

    Article  Google Scholar 

  2. Jain, A.K.; Gupta, V.K.; Bhatnagar, A.: Suhas.: utilization of industrial waste products as adsorbents for the removal of dyes. J. Hazard. Mater. 101(1), 31–42 (2003)

    Article  Google Scholar 

  3. Aziz, A.; Oualia, M.S.; Elandaloussia, E.; De Menorval, L.C.; Lindheimer, M.: Chemically modified olive stone: a low-cost sorbent for heavy metals and basic dyes removal from aqueous solutions. J. Hazard. Mater. 163, 441–447 (2009)

    Article  Google Scholar 

  4. Natt-Meroug, A.; Benjaballah, A.; Guellati, O.: Préparation et caractérisation d’un charbon actif à base d’un déchet agricole. In: Third International Conference on Energy, Materials, Applied Energetics and Pollution ICEMAEP2016, Constantine, Algeria, October 30–31. (2016)

  5. Esmaili, S.; Nasseri, S.R.; Atash-Dehghan, R.: Adsorption of lead and zinc ions from aqueous solutions by volcanic ash soil (VAS). In: Proceedings of the 8th International Conference Environmental Science and Technology, pp. 8–10 (2003)

  6. Belaroui, K.; Seghier, A.; Hadjel, M.: Synthesis of activated carbon based on apricot stones for wastewater treatment. Desalin. Water Treat. 52, 1422–1433 (2014)

    Article  Google Scholar 

  7. Kovalova, L.; Hansruedi, S.; Von Gunten, U.; Eugster, J.; Hagenbuch, M.; Wittmer, A.; Moser, R.; McArdell, C.S.: Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV. Environ. Sci. Technol. 47, 7899–7908 (2013)

    Article  Google Scholar 

  8. Ruhl, A.S.; Zietzschmann, F.; Hilbrandt, I.; Meinel, F.; Altmann, J.; Sperlich, A.; Jekel, M.: Targeted testing of activated carbons for advanced wastewater treatment. Chem. Eng. J. 257, 184–190 (2014)

    Article  Google Scholar 

  9. Khandegar, V.; Saroha, A.K.: Electrocoagulation for the treatment of textile industry effluente a review. J. Environ. Manag. 128, 949–963 (2013)

    Article  Google Scholar 

  10. Liang, C.Z.; Sun, S.P.; Li, F.Y.; Ong, Y.K.; Chung, T.S.: Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. J. Membr. Sci. 469, 306–315 (2014)

    Article  Google Scholar 

  11. Cañizares, P.; Martínez, F.; Jiménez, C.; Lobato, J.; Rodrigo, M.A.: Coagulation and electrocoagulation of wastes polluted with dyes. Environ. Sci. Technol. 40(20), 6418–6424 (2006)

    Article  Google Scholar 

  12. Cañizares, P.; Martínez, F.; Rodrigo, M.A.; Jiménez, C.; Sáez, C.; Lobato, J.: Modelling of wastewater electrocoagulation processes: part II: application to dye-polluted wastewaters and oil-in-water emulsions. Sep. Purif. Technol. 60(2), 147–154 (2008)

    Article  Google Scholar 

  13. Ge, Q.; Wang, P.; Wan, C.; Chung, T.S.: Polyelectrolyte-promoted forward osmosisemembrane distillation (FOeMD) hybrid process for dye wastewater treatment. Environ. Sci. Technol. 46, 6236–6243 (2012)

    Article  Google Scholar 

  14. Zhao, P.; Gao, B.; Xu, S.; Kong, J.; Ma, D.; Shon, H.K.; Yue, Q.; Liu, P.: Polyelectrolyte-promoted forward osmosis process for dye wastewater treatment exploring the feasibility of using polyacrylamide as draw solute. Chem. Eng. J. 264, 32–38 (2015)

    Article  Google Scholar 

  15. Punzi, M.; Nilsson, F.; Anbalagan, A.; Svensson, B.M.; Jeonsson, K.; Mattiasson, B.; Jonstrup, M.: Combined anaerobiceozonation process for treatment of textile wastewater: removal of acute toxicity and mutagenicity. J. Hazard. Mater. 292, 52–60 (2015)

    Article  Google Scholar 

  16. Aouni, A.; Fersi, C.; Cuartas-Uribe, B.; Bes-Pía, A.; Alcaina-Miranda, M.I.; Dhahbi, M.: Reactive dyes rejection and textile effluent treatment study using ultrafiltration and nanofiltration processes. Desalination 297, 87–96 (2012)

    Article  Google Scholar 

  17. Ong, Y.K.; Li, F.Y.; Sun, S.P.; Zhao, B.W.; Liang, C.Z.; Chung, T.S.: Nanofiltration hollow fiber membranes for textile wastewater treatment: lab-scale and pilotscale studies. Chem. Eng. Sci. 114, 51–57 (2014)

    Article  Google Scholar 

  18. Zhang, L.; Xu, L.; He, J.; Zhang, J.: Preparation of Ti/\(\text{ SnO }_2\)–Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration. Electrochim. Acta. 117, 192–201 (2014)

    Article  Google Scholar 

  19. Gupta, V.K.; Jain, R.; Mittal, A.; Saleh, T.A.; Nayak, A.; Agarwal, S.; Sikarwar, S.: Photocatalytic degradation of toxic dye amaranth on \(\text{ TiO }_2\)/UV in aqueous suspensions. Mater. Sci. Eng. C 32, 12–17 (2012)

    Article  Google Scholar 

  20. Wang, A.; Li, X.; Zhao, Y.; Wu, W.; Chen, J.; Meng, H.: Preparation and characterizations of \(\text{ Cu }_2\)O/reduced graphene oxide nanocomposites with high photo-catalytic performances. Powder Technol. 261, 42–48 (2014)

    Article  Google Scholar 

  21. Bhatnagar, R.; Joshi, H.; Mall, I.D.; Srivastava, V.C.: Electrochemical treatment of acrylic dye-bearing textile wastewater: optimization of operating parameters. Desalin. Water Treat. 52, 111–122 (2014)

    Article  Google Scholar 

  22. Aquino, J.M.; Rocha-Filho, R.C.; Ruotolo, L.A.; Bocchi, N.; Biaggio, S.R.: Electrochemical degradation of a real textile wastewater using b-\(\text{ Pbo }_2\) and DSA® anodes. Chem. Eng. J. 251, 138–145 (2014)

    Article  Google Scholar 

  23. Ghosh, A.; Dastidar, M.G.; Sreekrishnan, T.R.: Biosorption and biodegradation of chromium complex dye using Aspergillus species. J Hazard. Toxic Radioact. Waste 18(4), 4014–4022 (2014)

    Google Scholar 

  24. Choi, Y.; Park, B.; Cha, D.K.: Enhancing biological treatment of dye wastewater with zero-valent iron. J. Chem. Eng. 32, 1812–1817 (2015)

    Google Scholar 

  25. Bilal, M.; Asgher, M.; Parra Saldivar, S.; Hu, H.; Wang, W.; et al.: Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants-a review. Sci. Total Environ. 576, 646–659 (2017)

    Article  Google Scholar 

  26. Chatha, SAS.; Asgher, M.; Iqbal, H.M.N.: Enzyme-based solutions for textile processing and dye contaminant biodegradation-a review. Environ. Sci. Pollut. Res. 24, 14005–14018 (2017)

  27. Bilal, M.; Asgher, M.; Iqbal, H.M.N.; Hu, H.; Zhang, X.: Bio-based degradation of emerging endocrine-disrupting and dye-based pollutants using cross-linked enzyme aggregates. Environ. Sci. Pollut. Res. doi:10.1007/s11356-017-8369-y

  28. Bilal, M.; Iqbal, H.M.N.; Hu, H.; Wang, W.; Zhang, X.: Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes. J. Environ Manag. 188, 137–143 (2017)

    Article  Google Scholar 

  29. Bilal, M.; Iqbal, H.M.N.; Hu, H.; Wang, W.; Zhang, X.: Enhanced biocatalytic performance and dye degradation potential of chitosan encapsulated horseradish peroxidase in a packed bed reactor system. Sci. Total Environ. 575, 1352–1360 (2017)

    Article  Google Scholar 

  30. Asgher, M.; Shah, S.A.H.; Iqbal, H.M.N.: Statistical correlation between ligninolytic enzymes secretion and remazol brilliant yellow-3GL dye degradation potential of Trametes versicolor IBL-04. Water Environ. Res. 88, 338–345 (2016)

    Article  Google Scholar 

  31. Chatha, S.A.S.; Asgher, M.; Iqbal, H.M.N.; Ali, S.: A novel enzymatic stripping of CI reactive black B dyed knitted textiles fabric as an environmentally responsible technology. Electron. J. Biol. 12, 276–281 (2016)

    Google Scholar 

  32. Asgher, M.; Yasmeen, K.; Iqbal, H.M.N.: Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi J. Biol. Sci. 20, 347–352 (2013)

    Article  Google Scholar 

  33. Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A.: Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater. 177, 70–80 (2010)

    Article  Google Scholar 

  34. Amran, M.B.; Zulfikar, M.A.: Removal of congo red dye by adsorption onto phyrophyllite. Int. J. Environ. Stud. 67(6), 911–921 (2010)

    Article  Google Scholar 

  35. Jayaraj, R.; Thanaraj, P.J.; Natarajan, S.T.; Prasath, P.M.D.: Removal of congo red dye from aqueous solution using acid activated eco-friendly low cost carbon prepared from marine algae Valoria bryopsis. J. Chem. Pharm. Res. 3(3), 389–396 (2011)

    Google Scholar 

  36. Ghaedi, M.; Shojaeipour, E.; Ghaedi, A.M.; Sahraei, R.: Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization. Spectroch. Acta Part A Mol Biomol. Spectrosc. 142, 135–149 (2015)

    Article  Google Scholar 

  37. Benderdouche, N.; Bestani, B.; Benstaali, B.; Derrichen, Z.: Enhancement of the adsorptive properties of a desert Salsola vermiculata species. Adsorpt. Sci. Technol. 21(8), 739–750 (2003)

    Article  Google Scholar 

  38. Zou, W.; Liu, L.; Li, H.; Han, X.: Investigation of synergistic adsorption between methyl orange and Cd (II) from binary mixtures on magnesium hydroxide modified clinoptilolite. Korean J. Chem. Eng 33(7), 2073–2083 (2016). doi:10.1007/s11814-016-0048-z

    Article  Google Scholar 

  39. Zou, W.; Bai, H.; Gao, S.: Competitive adsorption of neutral red and \(\text{ Cu }^{2+}\) onto pyrolytic char: isotherm and kinetic study. J. Chem. Eng. Data 57, 2792–2801 (2012)

    Article  Google Scholar 

  40. Kacha, S.; Derriche, Z.; Elmaleh, S.: Equilibrium and kinetics of color removal from dye solutions with bentonite and polyaluminum hydroxide. Water Environ. Res. 75(1), 15–20 (2003)

    Article  Google Scholar 

  41. Malkoc, E.; Nuhoglu, Y.: Removal of Ni(II) ions from aqueous solutions using waste of tea factory: adsorption on a fixed-bed column. J. Hazard. B135, 328–336 (2006)

    Article  Google Scholar 

  42. Sakr, F.; Sennaoui, A.; Elouardi, M.; Tamimi, M.; Assabbane, A.: Adsorption study of Methylene Blue on biomaterial using cactus. J. Mater. Environ. Sci. 6(2), 397–406 (2015)

    Google Scholar 

  43. Zulfikar, M.A.; Setiyanto, H.: Adsorption of congo red from aqueous solution using powdered eggshell. Int. J. ChemTech Res. 5, 1532–1540 (2013)

    Google Scholar 

  44. Seghier, A.; Hadjel, M.; Benderdouche, N.: Adsorption study of heavy metal and acid dye on an amphoteric biomaterial using barbary fig skin. Arab J. Sci. Eng. doi:10.1007/s13369-016-2360-7 (2016)

  45. ASTM D4607-94, Standard Test Method for Determination of Iodine Number of Activated Carbon, (1999)

  46. Boehm, H.P.: Chemical identification of surface groups. Adv. Catal. 16, 179–274 (1966)

    Google Scholar 

  47. Liu, H.; Ning, W.; Cheng, P.; Zhang, J.; Wang, Y.; Zhang, C.: Evaluation of animal hairs-based activated carbon for sorption of norfloxacin and acetaminophen by comparing with cattail fiber-based activated carbon. Anal. Appl. Pyrol. 101, 156–165 (2013)

    Article  Google Scholar 

  48. Bestani, B.; Benderdouche, N.; Benstaali, B.; Belhakem, M.; Addou, A.: Methylene blue and iodine adsorption onto an activated desert plant. Bioresour. Technol. 99, 8441–8444 (2008)

    Article  Google Scholar 

  49. Noszko, L.; Bota, A.; Simay, A.; Nagy, L.: Preparation of activated carbon from the by-products of agricultural industry. Period Polytech. Chem. Eng. 28, 293–297 (1984)

    Google Scholar 

  50. Galiatsatou, P.; Metaxas, M.; Vasilia, K.R.: Adsorption of zinc by activated carbons prepared from solvent extracted olive pulp. J. Hazard. Mater. 91(1–3), 187–203 (2002)

    Article  Google Scholar 

  51. Kobya, M.; Demirbas, M.; Senturk, E.; Ince, M.: Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour. Technol. 96, 1518–1521 (2005)

    Article  Google Scholar 

  52. Namane, A.; Mekarzia, A.; Benrachedi, K.; Bensemra, B.N.; Hellal, A.: Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4. J. Hazard. Mater. B119, 189–194 (2005)

    Article  Google Scholar 

  53. Shrestha, S.; Son, G.; Lee, S.H.; Lee, T.G.: Isotherm and thermodynamic studies of Zn (II) adsorption on lignite and coconut shell-based activated carbon fiber. Chemosphere 92, 1053–1061 (2013)

    Article  Google Scholar 

  54. Davis, R.D.; Jarrett, W.L.; Mathias, L.J.: Solution \(^{13}\text{ C }\) NMR spectroscopy of pol-yamide homopolymers (nylons 6, 11, 12, 66, 69, 610 and 612) and several commercial co-polymers. Polymer 42, 2621–2626 (2001)

    Article  Google Scholar 

  55. Liua, H.; Gaoa, Q.; Daib, P.; Zhanga, J.; Zhanga, C.; Baoa, N.: Preparation and characterization of activated carbon from lotus stalk with guanidine phosphate activation: sorption of Cd(II). J. Anal. Appl. Pyrolysis. 102, 7–15 (2013)

    Article  Google Scholar 

  56. Li, K.; Zheng, Z.; Huang, X.; Zhao, G.; Feng, J.; Zhang, J.: Equilibrium, kinetic and thermodynamic studies on the adsorption of 2-nitroaniline onto activated carbon prepared from cotton stalk fibre. J. Hazard. Mater. 166, 213–220 (2009)

    Article  Google Scholar 

  57. Knupp, S.L.; Li, W.; Paschos, O.; Murray, T.M.; Snyde, r J.; Haldar, P.: The effect of experimental parameters on the synthesis of carbon nanotube/nanofiber supported platinum by polyol processing techniques. Carbon 46, 1276–1284 (2008)

    Article  Google Scholar 

  58. Morais, S.A.L.; Nascimentoa, E.A.; Queiro, C.R.A.A.; Pilo-Veloso, D.; Drumond, M.G.: Studies on polyphenols and lignin of astronium urundeuvawood. J. Braz. Chem. Soc. 10, 447–452 (1999)

  59. Freundlich, H.M.F.: Over the adsorption in solution. J. Phys. Chem. 57, 385–470 (1906)

  60. Pollard, S.J.T.; Sollars, C.J.; Perry, R.: A low cost adsorbent from spent bleaching earth. I-the selection of an activation procedure. J. Chem. Technol. Biotechnol. 50(2), 265–275 (1991)

    Article  Google Scholar 

  61. Yao, Y.; Xu, F.; Chen, M.; Xu, Z.; Zhu, Z.: Adsorption behavior of methylene blue on carbon nanotubes. Bioresour. Technol. 101, 3040–3046 (2010)

    Article  Google Scholar 

  62. Haghseresht, F.; Lu, G.: Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy Fuels 12, 1100–1107 (1998)

    Article  Google Scholar 

  63. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  Google Scholar 

  64. Hall, K.; Eagleton, L.; Acrivos, A.; Vermeulen, T.: Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind. Eng. Chem. Fundam. 5, 212–223 (1966)

    Article  Google Scholar 

  65. Murray, J.W.: The surface chemistry of hydrous manganese dioxide. J. Colloid Interface Sci. 46, 357 (1974)

    Article  Google Scholar 

  66. Lackovic, K.; Angove, M.J.; Wells, J.D.; Johnson, B.B.: Modeling the adsorption of Cd (II) onto goethite in the presence of citric acid. J. Colloid Interface Sci. 269, 37–45 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Seghier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seghier, A., Hadjel, M. & Benderdouche, N. Comparative Study of the Sorption Capacity and Contact Time of Congo Red Removal in a Binary and Singular System. Arab J Sci Eng 43, 2319–2327 (2018). https://doi.org/10.1007/s13369-017-2722-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2722-9

Keywords

Navigation