Skip to main content

Advertisement

Log in

Adsorption Study of Heavy Metal and Acid Dye on an Amphoteric Biomaterial Using Barbary Fig Skin

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, Barbary fig skin was used which is a natural adsorbent and is low cost, without any chemical or physical activation that causes loss of energy and mass and use of large amount of water for rinsing. The product was characterized by SEM, energy-dispersive X-ray, NMR\(^{13}\)C, and FTIR spectroscopy. In addition, physicochemical parameters to know the iodine value, \(\hbox {pH}_{ (\mathrm{ZPC})}\), and distribution of functional groups on the surface were determined. The material obtained was then used for the treatment of water contaminated by zinc released by zinc plating industrial activities and by an acid red dye (CR) from the textile industry. The results obtained after the study of kinetics, sorption isotherms, the effect of pH, mass and thermodynamic quantities show good efficiency in view of the large sorption capacity to the two treated pollutants (\({Q}_{\mathrm{max}\hbox {-}\mathrm{Zn}}=129.87\) mg g\(^{-1}\), \({Q}_{\mathrm{max}\hbox {-}\mathrm{CR}}=151.51\) mg g\(^{-1}\)). The results found in the course of this study show that the surface of the prepared material has an amphoteric character with the presence of cavities. Freundlich parameters confirm that the adsorption of both pollutants was favorable. The sorption capacity results were compared with those of other adsorbents cited in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Booth, S.C.; Workentine, M.L.; Weljie, A.M.; Turner, R.J.: Metabolomics and its application to studying metal toxicity. Metallomics 3, 1142–1152 (2011)

  2. Morris, K.; Zhao, H.J.; John, R.: Ferricyanide-mediated microbial reactions for environmental monitoring. Aust. J. Chem. 58(4), 237–245 (2005)

    Article  Google Scholar 

  3. Pasco, N.F.; Goonerate, R.; Daniel, R.M.; Czollner, A.; Scott, A.J.: Toxicity assessment of chlorophenols using a mediated microbial toxicity assay. Int. J. Environ. Anal. Chem. 88, 1063–1075 (2008)

    Article  Google Scholar 

  4. Tizzard, A.; Webber, J.; Gooneratne, R.; John, R.; Hay, J.; Pasco, N.: MICREDOX: application for rapid biotoxicity assessment. Anal. Chim. Acta 522, 197–205 (2004)

    Article  Google Scholar 

  5. Liu, C.; Sun, T.; Xu, X.; Dong, S.: Direct toxicity assessment of toxic chemicals with electrochemical method. Anal. Chim. Acta 641, 59–63 (2009)

    Article  Google Scholar 

  6. Pasco, N.; Baronian, K.B.; Jeffries, C.; Webber, J.; Hay, J.: MICREDOX\(^{\textregistered }\)—development of a ferricyanide-mediated rapid biochemical oxygen demand method using an immobilised Proteus vulgaris biocomponent Biosens. Biosens. Bioelectron. 20, 524–532 (2004)

    Article  Google Scholar 

  7. Pasco, N.; Hay, J.; Webber, J.: Biosensors MICREDOX—a new biosensor technique for rapid measurement of BOD and toxicity. Biomarkers 6, 83–89 (2001)

    Article  Google Scholar 

  8. Liu, C.; Yong, D.; Yu, D.; Dong, S.: Cell-based biosensor for measurement of phenol and nitrophenols toxicity. Talanta 84, 766–770 (2011)

    Article  Google Scholar 

  9. Yong, D.; Liu, C.; Yu, D.; Dong, S.: A sensitive, rapid and inexpensive way to assay pesticide toxicity based on electrochemical biosensor. Talanta 84, 7–12 (2011)

    Article  Google Scholar 

  10. Yong, D.; Liu, L.; Yu, D.; Dong, S.: Development of a simple method for biotoxicity measurement using ultramicroelectrode array under non-deaerated condition. Anal. Chim. Acta 701, 164–168 (2011)

    Article  Google Scholar 

  11. El Haddad, M.; Slimani, R.; Mamouni, R.; ElAntri, S.; Lazar, S.: Removal of two textile dyes from aqueous solutions onto calcined bones. J Assoc Arab Univ Basic Appl Sci 14, 51–59 (2013)

    Google Scholar 

  12. Mc Kay, G.: Adsorption of dyes tuffs from aqueous solutions with activated carbon. Part l: Equilibrium and batch contact time studies. J. Chem. Technol. Biotechnol. 32, 759–772 (1982)

    Article  Google Scholar 

  13. Mc Kay, G.: Waste colour removal from textile effluents. Am. Dyest. Rep. 68, 29–34 (1979)

    Google Scholar 

  14. Peric, J.; Trgo, M.; Vukojevic Medvidovic, N.: Removal of zinc, copper and lead by natural zeolite—a comparison of adsorption isotherms. Water Res. 38, 1893–1899 (2004)

    Article  Google Scholar 

  15. Rengaraj, S.; Yeon, K.H.; Kang, S.Y.; Lee, J.U.; Kim, K.W.; Moon, S.H.: Studies on adsorptive removal of Co(II), Cr(III) and Ni(II) by IRN77 cation-exchange resin. J. Hazard. Mater. 92, 185–198 (2002)

    Article  Google Scholar 

  16. Zhao, X.; Holl, W.H.; Yun, G.: Elimination of cadmium trace contaminations from drinking water. Water Res. 36, 851–858 (2002)

    Article  Google Scholar 

  17. Gouda, A.A.; Al Ghannam, S.M.: Impregnated multiwalled carbon nanotubes as efficient sorbent for the solid phase extraction of trace amounts of heavy metal ions in food and water samples. Food Chem. 202, 409–416 (2016)

    Article  Google Scholar 

  18. Ihsanullah, Abbas A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A.: Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep. Purif. Technol. 157, 141–161 (2016)

    Article  Google Scholar 

  19. Khare, P.; Yadav, A.; Ramkumar, J.; Verma, N.: Microchannel-embedded metal–carbon–polymer nanocomposite as a novel support for chitosan for efficient removal of hexavalent chromium from water under dynamic conditions. Chem. Eng. J. 293, 44–54 (2016)

    Article  Google Scholar 

  20. Larous, S.; Meniai, A.H.: Removal of copper(II) from aqueous solution by agricultural by-products-sawdust. Energy Proc. 18, 915–923 (2012)

    Article  Google Scholar 

  21. Liu, H.; Ning, W.; Cheng, P.; Zhang, J.; Wang, Y.; Zhang, C.: Evaluation of animal hairs-based activated carbon for sorption of norfloxacin and acetaminophen by comparing with cattail fiber-based activated carbon. Anal. Appl. Pyrolysis 101, 156–165 (2013)

    Article  Google Scholar 

  22. Nowicki, P.; Kazmierczak, J.; Pietrzak, R.: Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry stones. Powder Technol. 269, 312–319 (2015)

    Article  Google Scholar 

  23. Liu, H.; Gao, Q.; Dai, P.; Zhang, J.; Zhang, C.; Bao, N.: Preparation and characterization of activated carbon from lotus stalk with guanidine phosphate activation: sorption of Cd(II). Anal. Appl. Pyrolysis 102, 7–15 (2013)

    Article  Google Scholar 

  24. Liu, H.; Wang, X.; Zhai, G.; Zhang, J.; Zhang, C.; Bao, N.; Cheng, C.: Preparation of activated carbon from lotus stalks with the mixture of phosphoric acid and pentaerythritol impregnation and its application for Ni(II) sorption. Chem. Eng. J. 209, 155–162 (2012)

    Article  Google Scholar 

  25. Zhu, J.; Deng, B.; Yang, J.; Gang, D.: Modifying activated carbon with hybrid ligands for enhancing aqueous mercury removal. Carbon 47, 2014–2025 (2009)

    Article  Google Scholar 

  26. Esmi Ferreira, C.; Guevar, C.; Lanie Dhoury, M.; Schrive, L.; Barre, Y.; Palmeri, J.; Deratani, A.: Evaluating the use of activated carbon felts to remove Co\(^{2+}\), Ni\(^{2+}\) and Sr\(^{2+}\) from wastewater. Environ. Chem. Eng. 2, 1705–1712 (2014)

    Article  Google Scholar 

  27. Monday, M.; Adubakar, B.-Y.U.; Zaki, F.U.; Udoji, I.A.: Adsorption of Ni(II) and Zn(II) ions onto activated carbon derived from agricultural waste. Rep. Opin. 3(5), 41–45 (2011)

    Google Scholar 

  28. Aguayo-Villareal, I.A.; Bonilla-Petriciolet, A.; Hernandez-Montrya, V.; Montes-Moran, M.; Reynel-Avila, H.E.: Batch and column studies of Zn\(^{+2}\) ions removal from aqueous solution using chicken feathers as sorbents. Chem. Eng. J. 167, 67–76 (2010)

    Article  Google Scholar 

  29. Issabayeva, G.; Aroua, M.K.: Removal of copper and zinc ions onto biomodified palm shell activated carbon. World Acad. Sci. Eng. Technol. 5(4), 279–279 (2011)

    Google Scholar 

  30. Jamil, R.M.: Adsorption of methyl parathion pesticide from water using watermelon peels as a low cost adsorbent. Chem. Eng. J. 138, 616–621 (2008)

    Article  Google Scholar 

  31. Mahmoodi, N.M.; Salehi, R.; Arami, M.: Binary system dye removal from colored textile wastewater using activated carbon: kinetic and isotherm studies. Desalination 272, 187–195 (2011)

    Article  Google Scholar 

  32. Belaroui, K.; Seghier, A.; Hadjel, M.: Synthesis of activated carbon based on apricot stones for wastewater treatment. Desalin. Water Treat. 52, 1422–1433 (2014)

    Article  Google Scholar 

  33. Namane, A.; Mekarzia, A.; Benrachedi, K.; Bensemra, B.N.; Hellal, A.: Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl\(_2\) and H\(_3\)PO\(_4\). J. Hazard. Mater. B 119, 189–194 (2005)

    Article  Google Scholar 

  34. Khan, M.N.; Wahab, M.F.: Characterization of chemically modified corncobs and its application in the removal of metal ions from aqueous solution. J. Hazard. Mater. 141, 237–244 (2007)

    Article  Google Scholar 

  35. Khormaei, M.; Nasernejed, B.; Edrisi, M.; Eslamzadeh, T.: Copper bio sorption from aqueous solution by sour orange residue. J. Hazard. Mater. 149, 269–274 (2007)

    Article  Google Scholar 

  36. Boehm, H.P.: Chemical identification of surface groups. Adv. Catal. 16, 179–274 (1966)

    Google Scholar 

  37. Annadurai, A.; Juang, R.S.; Lee, D.J.: Adsorption of heavy metals from water using banana and orange peels. Water Sci. Technol. 47, 185–190 (2002)

    Google Scholar 

  38. Sakr, F.; Sennaoui, A.; Elouardi, M.; Tamimi, M.; Assabbane, A.: Adsorption study of methylene blue on biomaterial using cactus. J. Mater. Environ. Sci. 6(2), 397–406 (2015)

    Google Scholar 

  39. Daoud, M.; Benturki, O.: Activation d’un charbon à base de noyaux de jujubes et application à l’environnement. Adsorption d’un colorant de textile. Revue des Energies Renouvelables SIENR Ghardaïa, vol. 14, pp. 155–162 (2014)

  40. Li, F.T.; Yang, H.; Zhao, Y.; Xu, R.: Novel modified pectin for heavy metal adsorption. Chin. Chem. Lett. 18, 325–328 (2007)

    Article  Google Scholar 

  41. Farinella, N.V.; Matos, G.D.; Arruda, M.A.Z.: Grape bagasse as a potential biosorbent of metals in effluent treatments. Bioresour. Technol. 98, 1940–1946 (2007)

    Article  Google Scholar 

  42. Ibarra, J.V.; Moliner, R.: Coal characterization using pyrolysis-FTIR. J. Anal. Appl. Pyrolysis 20, 171–184 (1991)

    Article  Google Scholar 

  43. Barka, N.; Ouzaouit, K.; Abdennouri, M.; Makhfouk, M.: Dried prickly pear cactus (Opuntia ficus indica) cladodes as a low-cost and eco-friendly biosorbent for dyes removal from aqueous solutions. J. Taiwan Inst. Chem. Eng. 44, 52–60 (2013)

    Article  Google Scholar 

  44. Morais, S.A.L.; Nascimentoa, E.A.; Queiro, C.R.A.A.; Pilo-Veloso, D.; Drumond, M.G.: Studies on polyphenols and lignin of Astronium urundeuva wood. J. Braz. Chem. Soc. 10, 447–452 (1999)

    Article  Google Scholar 

  45. Aziz, A.; Oualia, M.S.; Elandaloussia, E.; De Menorval, L.C.; Lindheimer, M.: Chemically modified olive stone: a low-cost sorbent for heavy metals and basic dyes removal from aqueous solutions. J. Hazard. Mater. 163, 441–447 (2009)

    Article  Google Scholar 

  46. Ho, Y.S.; McKay, G.: Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)

    Article  Google Scholar 

  47. Tsai, W.T.; Yangm, J.M.; Laim, C.W.; Cheng, Y.H.; Lin, C.C.; Yeh, C.W.: Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour. Technol. 97, 488–493 (2006)

    Article  Google Scholar 

  48. Shrestha, S.; Son, G.; Lee, S.H.; Lee, T.G.: Isotherm and thermodynamic studies of Zn(II) adsorption on lignite and coconut shell-based activated carbon fiber. Chemosphere 92, 1053–1061 (2013)

    Article  Google Scholar 

  49. Amran, M.B.; Zulfikar, M.A.: Removal of Congo Red dye by adsorption onto phyrophyllite. Int. J. Environ. Stud. 67(6), 911–921 (2010)

    Article  Google Scholar 

  50. Chatterjee, S.; Lee, D.S.; Lee, M.W.; Woo, S.H.: Enhance adsorption of Congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide. Bioresour. Technol. 100, 2803–2809 (2009)

    Article  Google Scholar 

  51. Wang, L.; Wang, A.: Adsorption properties of Congo red from aqueous solution onto surfactantmodified montmorillonite. J. Hazard. Mater. 160, 173–180 (2008)

    Article  Google Scholar 

  52. Patil, A.K.; Shrivastava, V.S.: Alternanthera bettzichiana plant powder as low cost adsorbent for removal of Congo red from aqueous solution. Int. J. ChemTech Res. 2(2), 842–850 (2010)

    Google Scholar 

  53. Namasivayam, C.; Kavitha, D.: Removal of Congo red from water by adsorption onto activated carbon prepared from choir pith, an agricultural solid waste. Dyes Pigm. 54, 47–58 (2002)

    Article  Google Scholar 

  54. Zhang, Z.; Moghaddam, L.; O’Hara, I.M.; Doherty, W.O.S.: Congo red adsorption by ball-milled sugarcane bagasse. Chem. Eng. J. 178, 122–128 (2011)

    Article  Google Scholar 

  55. Binupriya, A.R.; Sathishkumar, M.; Swaminathan, K.; Ku, C.S.; Yun, S.E.: Comparative studies of removal of Congo red by native and modified mycelial pellets of Trametes versicolor in various reactor modes. Bioresour. Technol. 99, 1080–1088 (2008)

    Article  Google Scholar 

  56. Smaranda, C.; Gavrilescu, M.; Bulgariu, D.: Studies on sorption of Congo red from aqueous solution onto soil. Int. J. Environ. Res. 5(1), 177–188 (2011)

    Google Scholar 

  57. Chen, H.; Zhao, J.: Adsorption study for removal of Congo red anionic dye using organo-attapulgite. Adsorption 15, 381–389 (2009)

    Article  Google Scholar 

  58. Mumin, M.A.; Khan, M.M.R.; Akhter, K.F.; Uddin, M.J.: Potentially of open burnt clay as an adsorbent for the removal of Congo red from aqueous solution. Int. J. Environ. Sci. Technol. 4(4), 525–532 (2007)

  59. Jayaraj, R.; Thanaraj, P.J.; Natarajan, S.T.; Prasath, P.M.D.: Removal of Congo red dye from aqueous solution using acid activated eco-friendly low cost carbon prepared from marine algae Valoria bryopsis. J. Chem. Pharm. Res. 3(3), 389–396 (2011)

    Google Scholar 

  60. Zulfikar, M.A.; Setiyanto, H.: Adsorption of Congo red from aqueous solution using powdered eggshell. Int. J. ChemTech Res. 5, 1532–1540 (2013)

    Google Scholar 

  61. Galiatsatou, P.; Metaxas, M.; Vasilia, K.R.: Adsorption of zinc by activated carbons prepared from solvent extracted olive pulp. J. Hazard. Mater. 91(1–3), 187–203 (2002)

  62. Markovska, L.T.; Meshko, V.D.; Marinkovski, M.S.: Modeling of the adsorption kinetics of zinc onto granular activated carbon and natural zeolite. J. Serb. Chem. Soc. 71(8–9), 957–967 (2006)

    Article  Google Scholar 

  63. Kalyani, G.; Rao, G.B.; Saradhi, B.V.; Kumar, Y.P.: Equilibrium and kinetic studies on biosorption of zinc onto Gallus domesticus shell powder. J. Eng. Appl. Sci. 4(1), 39–49 (2009)

    Google Scholar 

  64. Lu, C.; Chiu, H.: Adsorption of zinc(II) from water with purified carbon nanotubes. Chem. Eng. Sci. 61, 1138–1145 (2006)

    Article  Google Scholar 

  65. Hasar, H.; Cuci, Y.; Obek, E.; Dilekoglu, M.F.: Removal of zinc(II) by activated carbon prepared from almond husks under different conditions. Adsorpt. Sci. Technol. 21(9), 799 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Seghier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seghier, A., Hadjel, M. & Benderdouche, N. Adsorption Study of Heavy Metal and Acid Dye on an Amphoteric Biomaterial Using Barbary Fig Skin. Arab J Sci Eng 42, 1487–1496 (2017). https://doi.org/10.1007/s13369-016-2360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2360-7

Keywords

Navigation