Skip to main content

Advertisement

Log in

Configuration Analysis of Stacked Microbial Fuel Cell in Power Enhancement and Its Application in Wastewater Treatment

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present study examined the performance of stacked microbial fuel cell for higher power generation and also for treating brewery waste effluent. The stackable microbial fuel cells are connected in series, parallel and series–parallel using standard glucose media produces increased power density of 813, 1546.57 and 2418 \(\hbox {mW\,m}^{-2}\), respectively, corresponding to 288 \(\hbox {mW\,m}^{-2}\) from single cell as control. Series–parallel setup arrangement with brewery effluent produces maximum power density of 1345 \(\hbox {mW\,m}^{-2}\) with 81% of COD removal efficiency within 72 h of operation. The series–parallel configuration system shows significant COD removal and maximum power density due to their better stability of redox potential in overall cells. The significant reduction of TDS, TSS was also observed in series–parallel connection over other stacking MFCs. The results of the present study highlight the importance of combining electrical circuit along with stacking in generating stable and high power from MFC for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butti, S.K.; Velvizhi, G.; Sulonen, M.L.; Haavisto, J.M.; Koroglu, E.O.; Cetinkaya, A.Y.; Singh, S.; Arya, D.; Modestra, J.A.; Krishna, K.V.; Verma, A.: Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling. Renew. Sustain. Energy Rev. 53, 462–476 (2016)

    Article  Google Scholar 

  2. Potter, M.C.: Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. Lond. Ser. B Biol. Sc. 84(571), 260–276 (1911)

    Article  Google Scholar 

  3. Rabaey, K.; Verstraete, W.: Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 23, 291–298 (2005)

    Article  Google Scholar 

  4. Ahn, Y.H.; Logan, B.E.: Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour. Technol. 101, 469–475 (2010)

    Article  Google Scholar 

  5. Zhang, F.; Brastad, K.S.; He, Z.: Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation. Environ. Sci. Technol. 45, 6690–6696 (2011)

    Article  Google Scholar 

  6. Werner, C.M.; Logan, B.E.; Saikaly, P.E.; Amy, G.L.: Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air cathode microbial osmotic fuel cell. J. Memb. Sci. 428, 116–122 (2013)

    Article  Google Scholar 

  7. Choi, J.; Ahn, Y.: Continuous electricity generation in stacked air cathode microbial fuel cell treating domestic wastewater. J. Environ. Manag. 130, 146–152 (2013)

    Article  Google Scholar 

  8. Oh, S.E.; Logan, B.E.: Voltage reversal during microbial fuel cell stack operation. J. Power Sources 167, 11–17 (2007)

    Article  Google Scholar 

  9. Knights, S.D.; Taylor, J.L.; Wikinson, D.P.; Wainwright, D.S.: Fuel cell anode structures for voltage reversal tolerance. Ballard Power Systems Inc., U.S. Patent (2003)

  10. Donovan, C.; Dewan, A.; Peng, H.; Heo, D.; Beyenal, H.: Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell. J. Power Sources 196, 1171–1177 (2011)

    Article  Google Scholar 

  11. Yuvraj, C.; Aranganathan, V.: Isolation and Identification of prospective dissimilatory iron reducing bacteria for electricity generation in microbial fuel cell. Int. J Adv. Life Sci. 8(3), 300–306 (2015)

    Google Scholar 

  12. Yuvraj, C.; Aranganathan, V.: Enhancement of voltage generation using isolated dissimilatory iron-reducing (DIR) bacteria Klebsiella pneumoniae in microbial fuel cell. Arab. J Sci. Eng. (2016). doi:10.1007/s13369-016-2108-4

    Google Scholar 

  13. Velasquez-Orta, S.B.; Head, I.M.; Curtis, T.P.; Scott, K.; Lloyd, J.R.; Von Canstein, H.: The effect of flavin electron shuttles in microbial fuel cells current production. Appl. Microbiol. Biotechnol. 85, 1373–1381 (2010)

    Article  Google Scholar 

  14. He, H.; Yuan, S.J.; Tong, Z.H.; Huang, Y.X.; Lin, Z.Q.; Yu, H.Q.: Characterization of a new electrochemically active bacterium, Lysinibacillus sphaericus D-8, isolated with a \(\text{ WO }_{3}\) nanocluster probe. Process Biochem. 49(2), 290–294 (2014)

    Article  Google Scholar 

  15. Juang, D.F.; Yang, P.C.; Lee, C.H.; Hsueh, S.C.; Kuo, T.H.: Electrogenic capabilities of gram negative and gram positive bacteria in microbial fuel cell combined with biological wastewater treatment. Int. J. Environ. Sci. Technol. 8(4), 781–792 (2011)

    Article  Google Scholar 

  16. Ren, L.; Ahn, Y.; Logan, B.E.: A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment. Environ. Sci. Technol. 48(7), 4199–4206 (2014)

    Article  Google Scholar 

  17. Huggins, T.; Fallgren, P.H.; Jin, S.; Ren, Z.J.: Energy and performance comparison of microbial fuel cell and conventional aeration treating of wastewater. J. Microb. Biochem. Technol. S6, 002 (2013). doi:10.4172/1948-5948.S6-002

    Google Scholar 

  18. Jafary, T.; Rahimnejad, M.; Ghoreyshi, A.A.; Najafpour, G.; Hghparast, F.; Daud, W.R.W.: Assessment of bioelectricity production in microbial fuel cells through series and parallel connections. Energy Convers. Manag. 75, 256–262 (2013)

    Article  Google Scholar 

  19. Gurung, A.; Oh, S.E.: The improvement of power output from stacked microbial fuel cells (MFCs). Energy Sources Part A 34(17), 1569–1576 (2012)

    Article  Google Scholar 

  20. Sathish Kumar, K.; Solorza-Feria, O.; Vázquez-Huerta, G.; Luna-Arias, J.P.; Poggi-Varaldo, H.M.: Electrical stress-directed evolution of biocatalysts community sampled from a sodic-saline soil for microbial fuel cells. J. New Mater. Electr. Syst. 15, 181–186 (2012)

    Google Scholar 

  21. Ieropoulos, I.; Greenman, J.; Melhuish, C.: Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. Int. J. Energy Res. 32, 1228–1240 (2008)

    Article  Google Scholar 

  22. Oh, S.E.; Kim, J.R.; Joo, J.H.; Logan, B.E.: Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Sci. Technol. 60(5), 1311–1317 (2009)

  23. An, J.; Sim, J.; Lee, H.S.: Control of voltage reversal in serially stacked microbial fuel cells through manipulating current: significance of critical current density. J. Power Sources 283, 19–23 (2015)

    Article  Google Scholar 

  24. Kim, Y.; Hatzell, M.C.; Hutchinson, A.J.; Logan, B.E.: Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal. Energy Environ. Sci. 4(11), 4662–4667 (2011)

    Article  Google Scholar 

  25. Zhuang, L.; Zheng, Y.; Zhou, S.; Yuan, Y.; Yuan, H.; Chen, Y.: Scalable microbial fuel cells (MFC) stack for continuous real wastewater treatment. Bioresour. Technol. 106, 82–88 (2012)

    Article  Google Scholar 

  26. Wen, Q.; Wu, Y.; Zhao, L.X.; Sun, Q.; Kong, F.Y.: Electricity generation and brewery wastewater treatment from sequential anode–cathode microbial fuel cell. J. Zhejiang Univ. Sci. A. 11(2), 87–93 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Aranganathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuvraj, C., Aranganathan, V. Configuration Analysis of Stacked Microbial Fuel Cell in Power Enhancement and Its Application in Wastewater Treatment. Arab J Sci Eng 43, 101–108 (2018). https://doi.org/10.1007/s13369-017-2720-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2720-y

Keywords

Navigation