Skip to main content
Log in

The effect of flavin electron shuttles in microbial fuel cells current production

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of electron shuttles on electron transfer to microbial fuel cell (MFC) anodes was studied in systems where direct contact with the anode was precluded. MFCs were inoculated with Shewanella cells, and flavins used as the electron shuttling compound. In MFCs with no added electron shuttles, flavin concentrations monitored in the MFCs' bulk liquid increased continuously with FMN as the predominant flavin. The maximum concentrations were 0.6 μM for flavin mononucleotide and 0.2 μM for riboflavin. In MFCs with added flavins, micro-molar concentrations were shown to increase current and power output. The peak current was at least four times higher in MFCs with high concentrations of flavins (4.5–5.5 μM) than in MFCs with low concentrations (0.2–0.6 μM). Although high power outputs (around 150 mW/m2) were achieved in MFCs with high concentrations of flavins, a Clostridium-like bacterium along with other reactor limitations affected overall coulombic efficiencies (CE) obtained, achieving a maximum CE of 13%. Electron shuttle compounds (flavins) permitted bacteria to utilise a remote electron acceptor (anode) that was not accessible to the cells allowing current production until the electron donor (lactate) was consumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bennetto HP, Stirling JL, Tanaka K, Vega CA (1983) Anodic reactions in microbial fuel cells. Biotechnol Bioeng 25(2):559–568

    Article  CAS  Google Scholar 

  • Biffinger JC, Pietron J, Ray R, Little B, Ringeisen BR (2007) A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens Bioelectron 22(8):1672–1679

    Article  CAS  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548–1555

    Article  CAS  Google Scholar 

  • Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, Culley DE, Reardon CL, Barua S, Romine MF et al (2007) Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microbiol 73(21):7003–7012

    Article  CAS  Google Scholar 

  • Cho EJ, Ellington AD (2007) Optimization of the biological component of a bioelectrochemical cell. Bioelectrochemistry 70(1):165–172

    Article  CAS  Google Scholar 

  • Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25(5):464–482

    Article  CAS  Google Scholar 

  • Gil G-C, Chang I-S, Kim BH, Kim M, Jang J-K, Park HS, Kim HJ (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18(4):327–334

    Article  CAS  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS et al (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS 103:11358–11363

    Article  CAS  Google Scholar 

  • Gorby Y, Mclean J, Korenevsky A, Rosso K, El-Naggar MY, Beveridge TJ (2008) Redox-reactive membrane vesicles produced by Shewanella. Geobiology 6(3):232–241

    Article  CAS  Google Scholar 

  • Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 30(2):145–152

    Article  CAS  Google Scholar 

  • Lanthier M, Gregory KB, Lovley DR (2008) Growth with high planktonic biomass in Shewanella oneidensis fuel cells. FEMS Microbiol Lett 278:29–35

    Article  CAS  Google Scholar 

  • Lee H-S, Parameswaran P, Kato-Marcus A, Torres CI, Rittmann BE (2007) Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res 42:1501–1510

    Article  Google Scholar 

  • Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662

    Article  CAS  Google Scholar 

  • Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. PNAS 105(10):3968–3973

    Article  CAS  Google Scholar 

  • Muyzer G, Ed W, Uitterrlinden A (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron-acceptor. Science 240:1319–1321

    Article  CAS  Google Scholar 

  • Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405(6782):94–97

    Article  CAS  Google Scholar 

  • Oh S, Logan BE (2005) Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 39(19):4673–4682

    Article  CAS  Google Scholar 

  • Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81(3):348–355

    Article  CAS  Google Scholar 

  • Picioreanu C, Head IM, Katuri KP, van Loosdrecht MCM, Scott K (2007) A computational model for biofilm-based microbial fuel cells. Water Res 41(13):2921–2940

    Article  CAS  Google Scholar 

  • Rabaey K, Boon N, Hofte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39(9):3401–3409

    Article  CAS  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101

    Article  CAS  Google Scholar 

  • Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40(8):2629–2634

    Article  CAS  Google Scholar 

  • Roller SD, Bennetto HP, Delaney GM, Mason JR, Stirling JL, Thurston CF (1984) Electron-transfer coupling in microbial fuel cells: comparion of redox-mediator reduction rates and respiratory rates of bacteria. J Chem Technol Biotechnol 34 B(1):3–12

    Google Scholar 

  • Schroder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629

    Article  Google Scholar 

  • Shukla AK, Suresh P, Berchmand S, Rajendran A (2004) Biological fuel cells and their application. Curr Sci 87(4):455–468

    CAS  Google Scholar 

  • Sund CJ, McMasters S, Crittenden SR, Harrell LE, Sumner JJ (2007) Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl Microbiol Biotechnol 76(3):561–568

    Article  CAS  Google Scholar 

  • Tang YJ, Meadows AL, Keasling JD (2007) A kinetic model describing Shewanella oneidensis MR-1 growth, substrate consumption, and product secretion. Biotechnol Bioeng 96(1):125–133

    Article  CAS  Google Scholar 

  • Torres CI, Kato Marcus A, Rittmann BE (2007) Kinetics of consumption of fermentation products by anode-respiring bacteria. Appl Microbiol Biotechnol 77(3):689–697

    Article  CAS  Google Scholar 

  • von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74(3):615–623

    Article  Google Scholar 

  • Zellner G, Neudörfer F, Diekmann H (1994) Degradation of lactate by an anaerobic mixed culture in a fluidized-bed reactor. Water Res 28(6):1337–1340

    Article  CAS  Google Scholar 

  • Zhang X-C, Halme A (1995) Modelling of a microbial fuel cell process. Biotechnol Lett 17(8):809–814

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Consejo Nacional de Ciencia y Tecnologia (CONACyT) via grant 196298 and by the Biotechnology and Biological Sciences Research Council (BBSRC) via grant BBS/B/03718. S. B. Velasquez-Orta appreciates the funding provided by the Postgraduate Researcher Development Programme in Newcastle University to conduct a Centre of Excellence Visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon B. Velasquez-Orta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velasquez-Orta, S.B., Head, I.M., Curtis, T.P. et al. The effect of flavin electron shuttles in microbial fuel cells current production. Appl Microbiol Biotechnol 85, 1373–1381 (2010). https://doi.org/10.1007/s00253-009-2172-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2172-8

Keywords

Navigation