Skip to main content

Advertisement

Log in

Experimental Investigation on Improving the Heat Transfer of Cascaded Thermal Storage System Using Different Fins

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The ever-increasing energy demand is the source of experimentation to explore different possibilities of producing higher energy and storing it for various needs. An experimental setup has been developed to study the heat transfer of cascaded thermal energy storage system using fins. Three different encapsulation materials copper, brass, and stainless steel are tried, and inside these encapsulations rectangular, annular, and pin fins are welded to increase the heat transfer area. Three different phase change materials namely d-mannitol, d-sorbitol, and paraffin wax are arranged inside the finned encapsulations. In this paper a detailed analysis is made with different encapsulations with rectangular, annular and pin fin, and is found to have the heat transfer as 4146.3 and 3991.4 kJ during charging and discharging conditions respectively for annular fin. The heat transfer rate is the highest one for annular fin in comparison to other types of pin and rectangular fins. Further, the efficiency of annular fins with copper encapsulation is found to be about 90% and while that of brass and stainless steel encapsulation are 88 and 85%, respectively. The results with annular fin analysis are completely presented in this research work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(m_{p}\) :

Mass of PCM in each encapsulation (kg)

\(N_{P}\) :

Number of encapsulated balls in each storage tank

\(v_{p}\) :

Volume of spherical ball (\(\hbox {m}^{3}\))

\(\rho \) :

Density of PCM (\(\hbox {kg}\,\hbox {m}^{-3}\))

m :

Total mass of the PCM (kg)

\(C_{p}\) :

Specific heat capacity (\(\hbox {J}\,\hbox {kg}^{-1}\,\hbox {K}^{-1}\))

\(\Delta T\) :

Difference in temperature (\({}^{\circ }\hbox {C}\))

L.H:

Melting enthalpy of PCM (\(\hbox {kJ}\,\hbox {kg}^{-1}\))

Q :

Heat transfer by PCM during charging and discharging (kJ)

\(Q_{\mathrm{RF}}\) :

Heat transfer through rectangular fin (kJ)

\(Q_{\mathrm{PF}}\) :

Heat transfer through pin fin (kJ)

\(Q_{\mathrm{AF}}\) :

Heat transfer through annular fin (kJ)

h :

Heat transfer coefficient (\(\hbox {W/m}^{2}\,^{\circ }\hbox {C}\))

k :

Thermal conductivity of material (\(\hbox {W/m}\,^{\circ }\hbox {C}\))

p :

Perimeter of fin (m)

w :

Width of fin (m)

L :

Length of fin (m)

\(T_{\mathrm{b}}\) :

Surface temperature at base (\({}^{\circ }\hbox {C}\))

\(T_{\infty }\) :

Surrounding temperature (\({}^{\circ }\hbox {C}\))

\(m_{\mathrm{f}}\) :

Fin constant

D :

Diameter of pin fin (m)

\(\hbox {r}_{1}\) :

Encapsulation ball surface radius (m)

\(\hbox {r}_{2}\) :

Annular fin radius (m)

\(\hbox {A}_{\mathrm{c}}\) :

Cross-sectional area of fin (\(\hbox {m}^{2}\))

\(\hbox {A}_{\mathrm{b}}\) :

Surface area (\(\hbox {m}^{2}\))

t :

Thickness of fin (m)

HTF:

Heat transfer fluid

INR:

Indian national rupee

LHTES:

Latent heat thermal energy storage

PCM:

Phase change material

PTC:

Parabolic trough collector

TES:

Thermal energy storage

i :

Initial

m :

Melting

f :

Final

p :

Phase change material

References

  1. Bao, Y.; Pan, W.; Wang, T.; Wang, Z.; Wei, F.; Xiao, F.: Microencapsulation of fatty acid as phase change material for latent heat storage. J. Energy Eng. 137(4), 214–219 (2011)

    Article  Google Scholar 

  2. Bushnell, David L.: Performance studies of a solar energy storing heat exchanger. Sol. Energy 41(6), 503–512 (1988)

    Article  Google Scholar 

  3. Nallusamy, N.; Sampath, S.; Velraj, R.: Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources. Renew. Energy 32, 1206–1277 (2007)

    Article  Google Scholar 

  4. Lebon, G.: Heat conduction at micro and nanoscales: a review through the prism of extended irreversible thermodynamics. J. Non-Equilib. Thermodyn. (2014). doi:10.1515/jnetdy-2013-0029

  5. Velraj, R.; Seeniraj, R.V.; Hafner, B.; Faber, C.; Schwarzer, K.: Heat transfer enhancement in a latent heat storage system. Sol. Energy 65(3), 171–180 (1999)

    Article  Google Scholar 

  6. Xu, H.J.; Zhao, C.Y.: Thermodynamic analysis and optimization of cascaded latent heat storage system for energy efficient utilization. Energy 90(2), 1662–1673 (2015)

    Article  Google Scholar 

  7. Sciacovelli, A.; Gagliardi, F.; Verda, V.: Maximization of performance of a PCM latent heat storage system with innovative fins. Appl. Energy 137, 707–715 (2015)

    Article  Google Scholar 

  8. Mat, S.; Al-Abidi, A.A.; Sopian, K.; Sulaiman, M.Y.; Mohammad, A.T.: Enhance heat transfer for PCM melting in triplex tube with internal-external fins. Energy Convers. Manag. 74, 223–236 (2013)

    Article  Google Scholar 

  9. Kamkari, Babak; Shokouhmand, Hossein: Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins. Int. J. Heat Mass Transf. 78, 839–851 (2014)

    Article  Google Scholar 

  10. Lamberg, Piia; Sir, Kai: Approximate analytical model for solidification in a finite PCM storage with internal fins. Appl. Math. Model. 27, 491–513 (2003)

    Article  MATH  Google Scholar 

  11. Fan, Li-Wu; Xiao, Yu-Qi; Zeng, Yi; Fang, Xin; Wang, Xiao; Xuc, Xu; et al.: Effects of melting temperature and the presence of internal fins on the performance of a phase change material (PCM)-based heat sink. Int. J. Therm. Sci. 70, 114–126 (2013)

    Article  Google Scholar 

  12. Karthikeyan, S.; Velraj, R.: Numerical investigation of packed bed storage unit filled with PCM encapsulated spherical containers: a comparison between various mathematical models. Int. J. Therm. Sci. 60, 153–160 (2012)

    Article  Google Scholar 

  13. Cheralathan, M.; Velraj, R.; Renganarayanan, S.: Performance analysis on industrial refrigeration system integrated with encapsulated PCM-based cool thermal energy storage system. Int. J. Energy Res 31(14), 1398–1413 (2007)

    Article  Google Scholar 

  14. Abuşka, M.; Akgül, M.B.: Experimental study on thermal performance of a novel solar air collector having conical springs on absorber plate. Arab. J. Sci. Eng. 41(11), 4509–4516 (2016)

    Article  Google Scholar 

  15. Levin, Peleg P.; Shitzer, Avraham; Hetsroni, Gad: Numerical optimization of a PCM-based heat sink with internal fins. Int. J. Heat Mass Transf. 61, 638–645 (2013)

    Article  Google Scholar 

  16. Chabane, F.; Hatraf, N.; Moummi, N.: Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater. Front. Energy 8(2), 160–172 (2014)

    Article  Google Scholar 

  17. Rathod, Manish K.; Banerjee, Jyotirmay: Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins. Appl. Therm. Eng. 75, 1084–1092 (2015)

    Article  Google Scholar 

  18. Cengel, Y.A.: Heat and Mass Transfer: A Practical Approach. McGraw-Hill, New York (2007)

    Google Scholar 

  19. Ozturk, H.: Comparison of energy and exergy efficiency for solar box and parabolic cookers. J. Energy Eng. 133(1), 53–62 (2007)

    Article  Google Scholar 

  20. Mosaffa, Amirhossein; Talati, Faramarz; Rosen, Marc A.; Tabrizi, Hassan Basirat: Phase change material solidification in a finned cylindrical shell thermal energy storage: an approximate analytical approach. Therm. Sci. 17(2), 407–418 (2013)

    Article  Google Scholar 

  21. Kashani, S.; Lakzian, E.: Numerical analysis of melting of nano-enhanced phase change material in latent heat thermal energy storage system. Therm. Sci. 18(2), S335–S345 (2014)

    Article  Google Scholar 

  22. Jesumathy, S.P.; Udayakumar, M.; Suresh, S.: Heat transfer characteristics in latent heat storage system using paraffin wax. J. Mech. Sci. Technol. 26(3), 959–965 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Beemkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beemkumar, N., Karthikeyan, A., Yuvarajan, D. et al. Experimental Investigation on Improving the Heat Transfer of Cascaded Thermal Storage System Using Different Fins. Arab J Sci Eng 42, 2055–2065 (2017). https://doi.org/10.1007/s13369-017-2455-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2455-9

Keywords

Navigation