Skip to main content

Advertisement

Log in

Removal of NO Using a Dielectric Barrier Discharge Reactor in a Cycled Adsorption–Desorption and Decomposition System

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Removal of nitrogen oxides (NO\(_x\)) from a cycled adsorption–desorption and decomposition system was studied at ambient temperature, which allows low concentration and high flow rate emissions. This system exhibited excellent recyclability and showed high performance through repeated cycling, with 85.4% NO conversion after eight cycles. Different metal oxide supports on activated carbon were used to remove NO by nonthermal plasma assisted catalytic adsorption–decomposition. The Cu/AC showed a large adsorption capacity, and copper ions increased the decomposition of NO, resulting in high energy efficiency. FTIR and TPD results showed that NO adsorption on the catalyst surface states is mainly as nitrate. The textural characteristics of catalysts for cyclic operation were investigated, and the catalytic activity relied on O atoms, Cu atoms and \(\hbox {Cu}^{2+}\) on the catalyst surface. The discharge voltages and several frequencies of the electric source were also investigated. As injection power energy increased, the reactor plasma chemical reaction process was increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, J.; Huang, Y.; Chen, X.: Selective catalytic oxidation of NO over iron and manganese oxides supported on mesoporous silica. J. Nat. Gas Chem. 7, 273–277 (2008)

    Article  Google Scholar 

  2. Kim, H.H.; Ogata, A.; Futamura, S.: Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Appl. Catal. B 79, 356–367 (2008)

    Article  Google Scholar 

  3. Zhao, D.; Li, X.; Shi, C.; et al.: Low-concentration formaldehyde removal from air using a cycled storage-discharge (CSD) plasma catalytic process. Chem. Eng. Sci. 66, 3922–3929 (2011)

    Article  Google Scholar 

  4. Wang, F.; Tang, X.L.; Yi, H.H.; et al.: NO removal in the process of adsorption-NTP catalytic decomposition. RSC Adv. 4, 8502–8509 (2014)

    Article  Google Scholar 

  5. Helen, H.Y.; Yang, R.T.: Removal of NO by reversible adsorption on Fe–Mn based transition metal oxides. Langmuir 17, 4997–5003 (2001)

    Article  Google Scholar 

  6. Wang, M.X.; Huang, Z.H.; Takaaki, S.; et al.: NO removal by electrospun porous carbon nanofibers at room temperature. Chem. Eng. J. 170, 505–511 (2001)

    Article  Google Scholar 

  7. Brandenberger, S.; KrÖcher, O.; Tissler, A.; et al.: The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by \({\rm NH}_{3}\). Appl. Catal. B 95, 348–357 (2010)

    Article  Google Scholar 

  8. Wang, X.Q.P.; Ning, Y.; et al.: Adsorption of low concentration phosphine in yellow phosphorus off-gas by impregnated activated carbon. J. Hazard. Mater. 171, 588–593 (2009)

    Article  Google Scholar 

  9. GB13223-2011. Emission standard of air pollutants for thermal power plants of China.

  10. Xu, X.L.; Chen, Z.H.; Chen, W.K.; et al.: Theoretical study of NO dimer adsorption and dissociation on the CuCr\(_{2}\)O\(_{4}\)(100) surface. Chin. J. Struct. Chem. 27, 927–932 (2008)

    Google Scholar 

  11. Iwamoto, M.; Yoda, Y.; Yamazoe, N.; et al.: Study of metal oxide catalysts by temperature programmed desorption oxygen adsorption on various metal oxides. J. Phys. Chem. 82, 2564–2570 (1978)

    Article  Google Scholar 

  12. Margarita, K.; Ahmet, S.V.: Cobalt supported on zirconia and sulfated zirconia I.: FT-IR spectroscopic characterization of the \({\rm NO}_{x}\) species formed upon NO adsorption and \({\rm NO}/{\rm O}_{2}\) coadsorption. J. Catal. 223, 352–363 (2004)

    Article  Google Scholar 

  13. Wang, Q.; Park, S.Y.; et al.: Co/KxTi\(_{2}\)O\(_{5}\) catalysts prepared by ion exchange method for NO oxidation to NO\(_{2}\). Appl. Catal. B 79, 101–107 (2008)

    Article  Google Scholar 

  14. Valanidou, L.; Theologides, C.; Zorpas, A.A.; et al.: A novel highly selective and stable Ag/MgO \(-\) CeO\(_{2}\)O\(_{3 }\)catalyst for the low-temperature ethanol-SCR of NO. Appl. Catal. B 107, 164–167 (2011)

    Article  Google Scholar 

  15. Liu, J.; Wang, P.H.: Structural characterization of pan-based ACF\(({\rm {I}})\)-change of content and binding state of nitrogen. New Carbon Mater. 14, 48–52 (1999)

    Google Scholar 

  16. Guo, Z.C.; Xie, Y.S.; et al.: Catalytic oxidation of NO to \({\rm NO}_{2}\) on activated carbon. Energy Convers. Manag. 42, 2005–2018 (2001)

    Article  Google Scholar 

  17. Isao, M.; Yozo, K.; Masukai, S.; et al.: Removal of SOx and NOx over activated carbon fibers. Carbon 38, 227–239 (2000)

    Article  Google Scholar 

  18. Kijlstra, W.S.; Brands, D.S.; Poels, E.K.; et al.: Mechanism of the selective catalytic reduction of NO by \({\rm NH}_{3}\) over MnOx/Al\(_{2}\)O\(_{3}\). J. Catal. 171, 208–218 (1997)

    Article  Google Scholar 

  19. Pena, D.A.; Uphade, B.S.; Smimiotis, P.G.: \({\rm TiO}_{2}\)-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with \({\rm NH}_{3}\): I. Evaluation and characterization of first row transition metals. J. Catal. 221, 421–431 (2004)

    Article  Google Scholar 

  20. Machida, M.; Kurogi, D.; Kijima, T.: MnO x -\({\rm CeO}_{2}\) binary oxides for catalytic NOx sorption at low temperatures. Selective reduction of sorbed NOx. Chem. Mater. 12, 3165–3170 (2000)

  21. Zhang, H.; Chu, W.; Xu, H.Y.; Zhou, J.: Plasma-assisted preparation of Fe-Cu bimetal catalyst for higher alcohols synthesis from carbon monoxide hydrogenation. Fuel 89, 3127–3131 (2010)

    Article  Google Scholar 

  22. Oukacine, L.; Gitzhofer, F.; Abatzoglou, N.; Gravelle, D.: Application of the induction plasma to the synthesis of two dimensional steam methane reforming Ni/Al\(_{2}\)O\(_{3}\) catalyst. Sur. Coat. Technol. 201, 2046–2053 (2006)

    Article  Google Scholar 

  23. Hua, W.; Jin, L.J.; He, X.F.; Liu, J.H.; Hu, H.Q.: Preparation of Ni/MgO catalyst for \({\rm CO}_{2}\) reforming of methane by dielectric-barrier discharge plasma. Catal. Commun. 11, 968–972 (2010)

    Article  Google Scholar 

  24. Hueso, J.L.; Espinós, J.P.; Caballero, A.; Cotrinoa, J.; González-Elipea, A.R.: XPS investigation of the reaction of carbon with NO, \({\rm O}_{2}, {\rm N}_{2}\) and \({\rm H}_{2}{\rm O}\) plasmas. Carbon 45, 89–96 (2007)

    Article  Google Scholar 

  25. Snyder, H.R.; Anderson, G.K.: Effect of air and oxygen content on the dielectric barrier discharge decomposition of chlorobenzene. IEEE Trans. Plasma Sci. 26, 1695–1699 (1998)

    Article  Google Scholar 

  26. Zhao, G.B.; Janardhan Garikipati, S.V.B.; Hu, X.D.; et al.: The effect of gas pressure on NO conversion energy efficiency in nonthermal nitrogen plasma. Chem. Eng. Sci. 60, 1927–1937 (2005)

    Article  Google Scholar 

  27. Kim, H.H.; Takashima, K.; Katsura, S.; et al.: Low-temperature NOx reduction processes using combined systems of pulsed corona discharge and catalysts. J. Phys. D Appl. Phys. 34, 604–613 (2001)

    Article  Google Scholar 

  28. Indarto, A.: Partial oxidation of methane to methanol with nitrogen dioxide in dielectric barrier discharge plasma: experimental and molecular modeling. Plasma Sources Sci. Technol. 25, 025002 (2016)

    Article  Google Scholar 

  29. Hur, M.; Lee, J.O.; Lee, J.Y.; Kang, W.S.; et al.: Abatement characteristics of \({\rm N}_{2}{\rm O}\) in low-pressure plasma reactor. Plasma Sources Sci. Technol. 25, 015008 (2016)

    Article  Google Scholar 

  30. Thomas, C.M.; Kimberly, K.W.; Reece, R.J.: An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans. Plasma Sci. 28, 41–45 (2000)

    Article  Google Scholar 

  31. Herron, J.; Green, D.: Chemical kinetics database and predictive schemes for nonthermal air plasma chemistry. Part II. Neutral species reactions. Plasma Chem. Plasma Process. 21, 459–481 (2001)

    Article  Google Scholar 

  32. McLamon, C.R.; Mathur, V.K.: Nitrogen oxide decomposition by barrier discharge. Ind. Eng. Chem. Res. 39, 2779–2787 (2000)

    Article  Google Scholar 

  33. Kanazawa, Seiji; Sumi, Tomoyoshi; Sato, Naruaki; et al.: Wide-range two-dimensional imaging of NO density profiles by LIF technique in a corona radical shower Reactor. IEEE Trans. Plasma Sci. 41, 200–205 (2005)

    Google Scholar 

  34. Francke, K.P.; Rudolph, R.; Miessner, H.: Design and operating characteristics of a simple and reliable DBD reactor for use with atmospheric air. Plasma Chem. Plasma Process. 23, 47–57 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Yi, H. & Tang, X. Removal of NO Using a Dielectric Barrier Discharge Reactor in a Cycled Adsorption–Desorption and Decomposition System. Arab J Sci Eng 42, 1463–1474 (2017). https://doi.org/10.1007/s13369-016-2344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2344-7

Keywords

Navigation