Skip to main content

Advertisement

Log in

Numerical Study of Laminar Flame Velocity of Hydrogen-Enriched Methane Flames Using Several Detailed Reaction Mechanisms

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The focus of this research work is to investigate the effect of adding hydrogen on the laminar speed of hydrogen-enriched methane flame. The laminar velocities of methane–hydrogen–air mixtures are very important in designing and predicting the progress of combustion and performance of \(\hbox {H}_{2}\)-fueled combustion devices. In this study, laminar flame velocities of various compositions of \(\hbox {CH}_{4}{-}\hbox {H}_{2}\)–air mixtures (from 0 to 100 % hydrogen) have been calculated for different equivalence ratios (ranging from 0.6 to 1.4) and using several detailed reaction mechanisms. Simulations were carried out using the flame speed calculation (FSC) model of the chemical kinetics code Chemkin 4.02. The results of this study were compared with many measurements data of laminar flame speed from the literature, and good agreements were obtained for the whole range of hydrogen blends and equivalence ratios, especially with the detailed reaction mechanism GRIMech 3.0. This research demonstrates that the laminar burning velocity of methane flame was enhanced by the addition of hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, J., Huang, Z., Miao, H., Wang, X., Jiang, D.: Characteristics of direct injection combustion fuelled by natural gas–hydrogen mixtures using a constant volume vessel. Int. J. Hydrog. Energy 33(7), 1947–1956 (2008)

    Article  Google Scholar 

  2. Ilbas, M., Crayford, A.P., Yilmaz, I., Bowen, P.J., Sired, N.: Laminar burning velocities of hydrogen–air and hydrogen–methane–air mixtures: an experimental study. Int. J. Hydrog. Energy 31, 1768–1779 (2006)

    Article  Google Scholar 

  3. Wierzba, I.; Wang, Q.: The flammability limits of H\(_{2}\)-CO-CH\(_{4}\) mixtures in air at elevated temperatures. Int. J. Hydrog. Energy 31(4), 485–489 (2006)

    Article  Google Scholar 

  4. Do Sacramento, E.M.; De Lima, L.C.; Oliveira, C.J.; Veziroglu, T.N.: A hydrogen energy system and prospects for reducing emissions of fossil fuels pollutants in the Ceara state-Brazil. Int. J. Hydrog. Energy 33(9), 2132–2137 (2008)

    Article  Google Scholar 

  5. Granovskii, M.; Dincer, I.; Rosen, M.A.: Greenhouse gas emissions reduction by use of wind and solar energies for hydrogen and electricity production: economic factors. Int. J. Hydrog. Energy 32(8), 927–931 (2007)

    Article  Google Scholar 

  6. Boushaki, T.; Dhué, Y.; Selle, L.; Ferret, B.; Poinsot, T.: Effects of hydrogen and steam addition on laminar burning velocity of methane–air premixed flame: experimental and numerical analysis. Int. J. Hydrog. Energy 37(11), 9412–9422 (2012)

    Article  Google Scholar 

  7. Rousseau, S.; Lemoult, B.; Tazerou, M.: Combustion characteristics of natural gas in a lean burn spark-ignition engine. Proc. Inst. Mech. Eng. D J. Autom. Eng. 213(D5), 481–489 (1999)

    Article  Google Scholar 

  8. Ben, L.; Dacros, N.R.; Truquet, R.; Charnay, G.: Influence of Air/Fuel Ratio on Cyclic Variation and Exhaust Emission in Natural Gas SI Engine. SAE Technical Papers, vol. 992901 (1999)

  9. Blarigan, P.V.; Keller, J.O.: A hydrogen fuelled internal combustion engine designed for single speed/power operation. Int. J. Hydrog. Energy 23(7), 603–609 (2002)

    Article  Google Scholar 

  10. Akansu, S.O.; Dulger, A.; Kahraman, N.: Internal combustion engines fueled by natural gas–hydrogen mixtures. Int. J. Hydrog. Energy 29(14), 1527–1539 (2004)

    Article  Google Scholar 

  11. Van Maaren, A.; Thung, D.S.; De Goey, L.P.H.: Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures. Combust. Sci. Technol. 96(4e6), 327–344 (1994)

    Article  Google Scholar 

  12. Vagelopoulos, C.M.; Egolfopoulos, F.N.: Direct experimental determination of laminar flame speeds. Proc. Combust. Inst. 27(1), 513–519 (1994)

    Article  Google Scholar 

  13. Gu, X.J.; Haq, M.Z.; Lawes, M.; Woolley, R.: Laminar burning velocity and Markstein lengths of methane–air mixtures. Combust. Flame 121(1e2), 41–58 (2000)

    Article  Google Scholar 

  14. Bosschaart, K.J.; De Goey, L.P.H.: The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combust. Flame 136(3), 261–269 (2004)

    Article  Google Scholar 

  15. Rozenchan, G.; Zhu, D.L.; Law, C.K.; Tse, S.D.: Outward propagation, burning velocities, and chemical effects of methane flames up to 60 ATM. Proc. Combust. Inst. 29(2), 1461–1470 (2002)

    Article  Google Scholar 

  16. Edmondson, H.; Heap, M.P.: The burning velocity of hydrogen–air flames. Combust. Flame 16(2), 161–165 (1971)

    Article  Google Scholar 

  17. Liu, D.D.S.; MacFarlane, R.: Laminar burning velocities of hydrogen–air and hydrogen–air steam flames. Combust. Flame 49(1e3), 59–71 (1983)

    Article  Google Scholar 

  18. Law, C.K.; Kwon, O.C.: Effects of hydrocarbon substitution on atmospheric hydrogen–air flame propagation. Int. J. Hydrog. Energy 29(8), 867–879 (2004)

    Article  Google Scholar 

  19. Dahoe, A.E.: Laminar burning velocities of hydrogen–air mixtures from closed vessel gas explosions. J. Loss Prev. Process Ind 18(3), 152–166 (2005)

    Article  Google Scholar 

  20. Koroll, G.W.; Kumar, R.K.; Bowles, E.M.: Burning velocities of hydrogen–air mixtures. Combust. Flame 94(3), 330–340 (1993)

    Article  Google Scholar 

  21. Yu, G.; Law, C.K.; Wu, C.K.: Laminar flame speeds of hydrocarbon + air mixtures with hydrogen addition. Combust. Flame 63(3), 339–347 (1986)

    Article  Google Scholar 

  22. Uykur, C.; Henshaw, P.P.; Ting, D.S.K.; Barron, R.M.: Effects of addition of electrolysis products on methane/air premixed laminar combustion. Int. J. Hydrog. Energy 26(3), 265–273 (2001)

    Article  Google Scholar 

  23. Wang, J.; Huang, Z.; Tang, C.; Miao, H.; Wang, X.: Numerical study of the effect of hydrogen addition on methane–air mixtures combustion. Int. J. Hydrog. Energy 34(2), 1084–1096 (2009)

    Article  Google Scholar 

  24. Tahtouh, T.; Halter, F.; Samson, E.; Mounaïm-Rousselle, C.: Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane–air flames. Int. J. Hydrog. Energy 34(19), 8329–8338 (2009)

    Article  Google Scholar 

  25. Mariani, A.; Morrone, B.; Unich, A.: A Review of Hydrogen-Natural Gas Blend Fuels in Internal Combustion Engines, Fossil Fuel and the Environment, Dr. Shahriar Khan (Ed.) (2012), ISBN: 978-953-51-0277-9, InTech

  26. Itsuki, U.: Hydrogen and Natural Gas Mixture, Energy Carriers and Conversion Systems, vol. 1. Tokyo: Encyclopedia of Life Support Systems (EOLSS), pp. 283-289 (2008).

  27. Bougrine, S.; Richard, S.; Nicolle, A.; Veynante, D.: Numerical study of laminar flame properties of diluted methane–hydrogen–air flames at high pressure and temperature using detailed chemistry. Int. J. Hydrog. Energy 36, 12035–12047 (2011)

    Article  Google Scholar 

  28. Montgomery, C.J.; Cremer, M.A.; Chen, J.-Y.; Westbrook, C.K.; Maurice, L.Q.: Reduced chemical kinetic mechanisms for hydrocarbon fuels. J. Propuls. Power 18(1), 192–198 (2002)

    Article  Google Scholar 

  29. Glassman, I.; Yetter, R.A.: Combustion, 4th edn. Elsevier, New York (2008)

    Google Scholar 

  30. Smith, G.P.; Golden, D.M.; Frenklach, M.; Moriarty, N.W.; Eitneer, B.; Goldenberg, M.; Bowman, C.T.; Hanson, R.K.; Song, S.;Jr. Gardiner, W.C.; Lissiauski, V.V.; Qin, Z.: GRIMech 3. http://www.me.berkeley.edu/gri_mech

  31. Wiliams group, F.A.: Chemical-Kinetic Mechanisms for Combustion Applications, San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego. http://combustion.ucsd.edu

  32. Kee, R.J. et al.: CHEMKIN Release 4..2, Reaction Design, San Diego (2005)

  33. Di Sarli, V.; Di Benedetto, A.: Laminar burning velocity of hydrogen–methane/air premixed flames. Int. J. Hydrog. Energy 32, 637–646 (2007)

    Article  Google Scholar 

  34. Huang, Z.; Zhang, Y.; Zeng, K.; Liu, B.; Wang, Q.; Jiang, D.: Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combust. Flame 146(1–2), 302–311 (2006)

    Article  Google Scholar 

  35. Haniff, M.S.; Melvin, A.; Smith, D.B.; Williams, A.: The burning velocities of methane and SNG mixtures with air. J. Inst. Energy 62(453), 229–236 (1989)

  36. Tanoue, K.; Kido, H.; Hamatake, T.; Shimada, F.: Improving the Turbulent Combustion Performance of Lean Methane Mixture by Hydrogen Addition, Seoul 2000 FISITA World Automotive Congress, Seoul, Korea, June 12–15 (1996)

  37. Dirrenberger, P.; Le Gall, H.; Bounaceur, R.; Herbinet, O.; Glaud, P.A.; Konnov, A.; Battin-Leclerc, F.: Measurement of laminar flame velocity for components of natural gas. Energy Fuels Am. Chem. Soc. 25(9), 3875–3884 (2011)

    Article  Google Scholar 

  38. Halter, F.; Chauveau, C.; Djeballi-Chaumeix, N.; Gokalp, I.: Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane–hydrogen–air mixtures. Proc. Combust. Inst. 30, 201–208 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Ennetta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ennetta, R., Alaya, M. & Said, R. Numerical Study of Laminar Flame Velocity of Hydrogen-Enriched Methane Flames Using Several Detailed Reaction Mechanisms. Arab J Sci Eng 42, 1707–1713 (2017). https://doi.org/10.1007/s13369-016-2275-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2275-3

Keywords

Navigation