Skip to main content
Log in

Numerical study of effects of hydrogen addition on methane combustion behaviors

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The methane combustion with hydrogen addition can effectively reduce carbon emissions in the iron and steel making industry, while the combustion mechanism is still poorly understood. The oxy-fuel combustion of methane with hydrogen addition in a 0.8 MW oxy-natural gas combustion experimental furnace was numerically studied to investigate six different combustion mechanisms. The results show that the 28-step chemical reaction mechanism is the optimal recommendation for the simulation balancing the numerical accuracy and computational expense. As the hydrogen enrichment increases in fuel, the highest flame temperature increases. Consequently, the chemical reaction accelerates with enlarging the peak of the highest flame temperature and intermediate OH radicals. When the hydrogen enrichment reaches 75 vol.%, the flame front is the farthest, and the flame high-temperature zone occupies the largest proportion corresponding to the most vigorous chemical reactions in the same oxygen supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.J. Karimi, M.H. Saidi, J. Iron Steel Res. Int. 17 (2010) No. 4, 12–17.

    Article  Google Scholar 

  2. Y. Lipo, L. Yunpeng, H. Yingwu, Z. Yongshun, International Journal of Low-Carbon Technologies 17 (2022) 308–320.

    Article  Google Scholar 

  3. N. Rafidi, W. Blasiak, Appl. Therm. Eng. 26 (2006) 2027–2034.

    Article  Google Scholar 

  4. M. Gu, G. Chen, X. Liu, C. Wu, H. Chu, Int. J. Heat Mass Transfer 76 (2014) 405–410.

    Article  Google Scholar 

  5. W. Blasiak, W.H. Yang, N. Rafidi, Combust. Flame 136 (2004) 567–569.

    Article  Google Scholar 

  6. S.H. Han, D. Chang, C. Huh, Energy 36 (2011) 1265–1272.

    Article  Google Scholar 

  7. G. Tang, B. Wu, D. Bai, Y. Wang, R. Bodnar, C.Q. Zhou, Int. J. Heat Mass Transfer 113 (2017) 1142–1151.

    Article  Google Scholar 

  8. A. Laukka, E.P. Heikkinen, T. Fabritius, Metals 11 (2021) 621.

    Article  Google Scholar 

  9. X. Jiang, P. Li, J. Guo, F. Hu, F. Wang, J. Mi, Z. Liu, Int. J. Hydrogen Energy 43 (2018) 8534–8557.

    Article  Google Scholar 

  10. J. Min, F. Baillot, A. Wyzgolik, E. Domingues, M. Talbaut, B. Patte-Rouland, C. Galizzi, Combust. Sci. Technol. 182 (2010) 1782–1804.

    Article  Google Scholar 

  11. F. Liu, H. Guo, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 125 (2001) 778–787.

    Article  Google Scholar 

  12. Y. Yan, W. Tang, L. Zhang, W. Pan, Z. Yang, Y. Chen, J. Lin, Int. J. Hydrogen Energy 39 (2014) 1864–1873.

    Article  Google Scholar 

  13. J. Wang, Z. Huang, C. Tang, H. Miao, X. Wang, Int. J. Hydrogen Energy 34 (2009) 1084–1096.

    Article  Google Scholar 

  14. Q. Jiao, H.Y. Miao, Z.H. Huang, D.M. Jiang, K. Zeng, J. Combust. Sci. Technol. 15 (2009) 259–265.

    Google Scholar 

  15. H. Wu, K.J. Mu, Y. Wang, Y.H. Xiao, Journal of Engineering for Thermal Energy and Power 25 (2010) 102–106.

    Google Scholar 

  16. M. İlbaş, İ. Yılmaz, Int. J. Energy Res. 36 (2012) 643–647.

    Article  Google Scholar 

  17. F. Moreno, J. Arroyo, M. Muñoz, C. Monné, Int. J. Hydrogen Energy 37 (2012) 13564–13573.

    Article  Google Scholar 

  18. M. Ayoub, C. Rottier, S. Carpentier, C. Villermaux, A.M. Boukhalfa, D. Honoré, Int. J. Hydrogen Energy 37 (2012) 6912–6921.

    Article  Google Scholar 

  19. A. Mardani, S. Tabejamaat, Int. J. Hydrogen Energy 35 (2010) 11324–11331.

  20. E. Hu, Z. Huang, J. Zheng, Q. Li, J. He, Int. J. Hydrogen Energy 34 (2009) 6545–6557.

    Article  Google Scholar 

  21. A. Mardani, Fuel 191 (2017) 114–129.

  22. W. Jin, C. Ren, J. Li, J. Wang, Y. Yan, Fuel 310 (2022) 122292.

    Article  Google Scholar 

  23. S.H. Han, D. Chang, Int. J. Heat Mass Transfer 55 (2012) 4079–4087.

    Article  Google Scholar 

  24. C. Yin, S. Singh, S. Sanchez Romero, Energy Procedia 120 (2017) 564–571.

  25. J.Y. Murthy, S.R. Mathur, J. Thermophys. Heat Transfer 12 (1998) 313–321.

    Article  Google Scholar 

  26. J.C. Chai, H.S. Lee, S.V. Patankar, J. Thermophys. Heat Transfer 8 (1994) 419–425.

    Article  Google Scholar 

  27. T.F. Smith, Z.F. Shen, J.N. Friedman, J. Heat Transfer 104 (1982) 602–608.

    Article  Google Scholar 

  28. C. Yin, L.C.R. Johansen, L.A. Rosendahl, S.K. Kær, Energy Fuels 24 (2010) 6275–6282.

    Article  Google Scholar 

  29. R. Johansson, K. Andersson, B. Leckner, H. Thunman, Int. J. Heat Mass Transfer 53 (2010) 220–230.

  30. L. Yan, G. Yue, B. He, Appl. Therm. Eng. 94 (2016) 209–220.

    Article  Google Scholar 

  31. C.L. Yeh, Int. J. Heat Mass Transfer 55 (2012) 3601–3617.

  32. M. Graça, A. Duarte, P.J. Coelho, M. Costa, Fuel Process. Technol. 107 (2013) 126–137.

    Article  Google Scholar 

  33. C. Yin, L.A. Rosendahl, S.K. Kær, Fuel 90 (2011) 2519–2529.

    Article  Google Scholar 

  34. S. Hjärtstam, F. Normann, K. Andersson, F. Johnsson, Ind. Eng. Chem. Res. 51 (2012) 10327–10337.

    Article  Google Scholar 

  35. W.P. Jones, R.P. Lindstedt, Combust. Flame 73 (1988) 233–249.

    Article  Google Scholar 

  36. J. Andersen, C.L. Rasmussen, T. Giselsson, P. Glarborg, Energy Fuels 23 (2009) 1379–1389.

  37. C.K. Westbrook, F.L. Dryer, Combust. Sci. Technol. 27 (1981) 31–43.

  38. M. Jazbec, D.F. Fletcher, B.S. Haynes, Appl. Math. Model. 24 (2000) 689–696.

    Article  Google Scholar 

  39. F. Breussin, N. Lallemant, R. Weber, Combust. Sci. Technol. 160 (2000) 369–397.

    Article  Google Scholar 

  40. S.R. Turns, An introduction to combustion, Vol. 287, McGraw-Hill Companies, New York, USA, 1996.

  41. J. E, Q. Peng, X. Zhao, W. Zuo, Z. Zhang, M. Pham, Appl. Therm. Eng. 110 (2017) 665–677.

Download references

Acknowledgements

This research was funded by the China Postdoctoral Science Foundation (2021M690975), the Opening Research Projects of State Key Laboratory of Advanced Metallurgy/Multiphase Flow in Power Engineering (K22-04, SKLMF-KF-1901) and the Jiangxi Provincial Natural Science Foundation (20212BAB214023 and 20212BDH81001) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-chao Wei or Jia-xin Cui.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

E, Dy., Weng, Ly., Tang, Gw. et al. Numerical study of effects of hydrogen addition on methane combustion behaviors. J. Iron Steel Res. Int. 30, 2173–2185 (2023). https://doi.org/10.1007/s42243-023-00965-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00965-x

Keywords

Navigation