Skip to main content
Log in

Natural Convection Heat Transfer of a Nanofluid into a Cubical Enclosure: Lattice Boltzmann Investigation

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Through this paper, the hydrodynamic and thermal characteristics of Ag–water nanofluid, filling a differentially heated cubic enclosure, are numerically investigated. To do so, a developed computer code based on the lattice Boltzmann approach coupled with the finite-difference method is used. The later has been validated after comparison between the obtained results and experimental and numerical ones already found in the literature. To make clear the effect of main parameters such as the Rayleigh number, the nanoparticle volume fraction, and the enclosure inclination angle, the convection phenomenon was reported by means of streamlines, temperature iso-surfaces, and velocity and temperature profiles. A special attention was paid to the Nusselt number evolution. Compared to a 2D investigation, and when the convection mode dominates, taking into account the third direction leads to significant modifications on the nanofluid motion and heat transfer as well. As the conductive regime dominates, the use of a 2D configuration is found to be valid to predict the studied phenomenon. It is to note that the three-dimensional D3Q19 model was adopted based on a cubic lattice, where each pattern of the later is characterized by 19 discrete speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({a}\) :

Coefficient in external forces (\({= g \,\beta)}\)

\({a_{ij}}\) :

Coefficients in equation (13)

\({c}\) :

Cold

\({c_{s}}\) :

Sound velocity in the lattice (\({c_{s}=1/\sqrt{3})}\)

\({C_{p}}\) :

Specific heat at constant pressure, (J kg\({^{-1}}\)  K\({^{-1})}\)

\({f}\) :

fluid

\({f_{{\rm eq}}}\) :

Equilibrium distribution function

\({F_{{\rm ext}}}\) :

External force

\({f_{i}}\) :

Distribution function

\({h}\) :

Hot

\({k}\) :

Thermal conductivity, (W m\({^{-1}}\)  K\({^{-1})}\)

\({H_{ x,y,z}}\) :

Enclosure dimensions, (m)

\({m_{j}}\) :

Moments

nf:

Nanofluid

Nu:

Mean Nusselt number

Pr:

Prandtl number (Pr = \({v/\alpha)}\)

\({s}\) :

Solid particles

\({S_{j}}\) :

Relaxation rate

\({t}\) :

Time, (s)

\({T}\) :

Temperature, (K)

\({T_{0}}\) :

Mean temperature, (\({= (T_{{\rm h}}}\) + \({T_{{\rm c}})}\) / 2)

Ra:

Rayleigh number, (= 2\({T_{0}}\) H\({^{3}}\) a/ \({\nu}\) k)

\({u}\) :

Horizontal velocity component, (m)

\({v}\) :

Vertical velocity component, (m)

\({w}\) :

Depth velocity component, (m)

\({x, y, z}\) :

Dimensional cartesian coordinates, (m)

\({X,Y,Z}\) :

Dimensionless coordinates, (\({X = x/H}\) , \({Y = y/H}\) , \({Z = z/H}\))

\({\alpha}\) :

Thermal diffusivity, (m\({^{2}}\)  s\({^{-1})}\)

\({\beta}\) :

Thermal expansion coefficient, (K\({^{-1})}\)

\({\theta}\) :

Dimensionless temperature

\({\omega_{i}}\) :

Coefficients of the equilibrium function

\({\rho}\) :

Density, (kg m\({^{-3})}\)

\({\phi}\) :

Nanoparticles volume fraction

\({\varepsilon}\) :

Energy square

\({\nu}\) :

Kinematic viscosity, m\({^{2}}\)  s\({^{-1}}\)

\({\Omega }\) :

Collision operator

References

  1. Koseff J.R., Street R.L.: Visualization of a shear driven three dimensional recirculating flow. J. Fluids Eng. 106, 21–29 (1984)

    Article  Google Scholar 

  2. Barakos G., Mitsoulis E.: Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions. Int. J. Num. Methods Fluids 18, 695–719 (1994)

    Article  MATH  Google Scholar 

  3. Calcagni B., Marsili F., Paroncini M.: Natural convective heat transfer in square enclosure heated from below. Appl. Therm. Eng. 25, 2522–2531 (2005)

    Article  Google Scholar 

  4. Jou R.Y., Tzeng S.C.: Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures. Int. Commun. Heat Mass Transf. 33, 727–736 (2006)

    Article  Google Scholar 

  5. Moraveji M.K., Darabi M., Haddad S.M.H., Davarnejad R.: Modeling of convective heat transfer of a nanofluid in the developing region of tube flow with computational fluid dynamics. Int. Commun. Heat Mass Transf. 38, 1291–1295 (2011)

    Article  Google Scholar 

  6. Choi S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Singer, D.A., Wang, H.P. (eds) Developments and Applications of Non-Newtonian Flows, pp. 99–105. American Society of Mechanical Engineers, New York (1994)

    Google Scholar 

  7. Wang X., Xu X., Choi S.U.S.: Thermal conductivity of nanoparticle-fluid mixture. J. Therm. Heat Transf. 13, 474–480 (1999)

    Article  Google Scholar 

  8. Jou R.Y., Tzeng S.C.: Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures. Int. Commun. Heat Mass Transf. 33, 727–736 (2006)

    Article  Google Scholar 

  9. Santra A.K., Sen S., Chakraborty N.: Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates. Int. J. Therm. Sci. 48, 391–400 (2009)

    Article  Google Scholar 

  10. Ghasemi B., Aminossadati S.M.: Natural convection heat transfer in an inclined enclosure filled with a water–CuO nanofluid. Numer. Heat Transf. Part A. 55(8), 807–823 (2009)

    Article  Google Scholar 

  11. Ogut E.B.: Heat transfer of water-based nanofluids with natural convection in an inclined square enclosure. J. Therm. Sci. Tech. 30, 23–33 (2009)

    Google Scholar 

  12. Kahveci K.: Buoyancy driven heat transfer of nanofluids in a tilted enclosure. J. Heat Transf. 132(6), 1–12 (2010)

    Article  Google Scholar 

  13. Aminossadati S.M., Ghasemi B.: Enhanced natural convection in an isosceles triangular enclosure filled With a nanofluid. Comput. Math. Appl. 61, 1739–1753 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Elif B.O.: Natural convection of water-based nanofluids in an inclined enclosure with a heat source. Int. J. Therm. Sci. 48, 2063–2073 (2009)

    Article  Google Scholar 

  15. Oztop H.F., Abu-Nada E., Varol Y., Al-Salem K.: Computational analysis of non-isothermal temperature distribution on natural convection in nanofluid filled enclosures. Superlattices Microstruct. 49, 453–467 (2011)

    Article  Google Scholar 

  16. Arani A., Mazrouei S., Mahmoodi M., Ardeshiri A., Aliakbari M.: Numerical study of mixed convection flow in a lid-driven cavity with sinusoidal heating on side walls using nanofluid. Superlattice Microstruct. 51, 893–911 (2012)

    Article  Google Scholar 

  17. Das K., Duari P.R., Kundu P.K.: Numerical simulation of nanofluid flow with convective boundary condition. J. Egypt Math. Soc. 23, 435–439 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Das K., Duari P.R., Kundu P.K.: Nanofluid flow over an unsteady stretching surface in presence of thermal radiation. Alexandria Eng. J. 53(3), 737–745 (2014)

    Article  Google Scholar 

  19. Teamah M.A., El-Maghlany W.M.: Augmentation of natural convective heat transfer in square cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Int. J. Therm. Sci. 58, 130–142 (2012)

    Article  Google Scholar 

  20. Ameziani D.E., Guo Y., Bennacer R., El Ganaoui M., Bouzidi M.: Competition between Lid-driven and natural convection in square cavities investigated with a Lattice Boltzmann method. Comput. Therm. Sci. 2(3), 269–282 (2010)

    Article  Google Scholar 

  21. Guo Y., Bennacer R., Shen S., Ameziani D.E., Bouzidi M.: Simulation of mixed convection in a slender rectangular cavity with a Lattice Boltzmann Method. Int. J. Num. Methods Heat Fluid flow. 3, 227–248 (2010)

    Google Scholar 

  22. He X., Luo L.S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811–6817 (1997)

    Article  Google Scholar 

  23. Wolf-Gladrow D.A.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  24. Sullivan S.P., Gladden L.F., Johns M.L.: Simulation of power-law fluid flow through porous media using lattice Boltzmann techniques. J. Non Newt. Fluid Mech. 133, 91–98 (2006)

    Article  MATH  Google Scholar 

  25. Mohamad A.A., El-Ganaoui M., Bennacer R.: Lattice Boltzmann simulation of natural convection in an open ended cavity. Int. J. Therm. Sci. 48, 1870–1875 (2009)

    Article  Google Scholar 

  26. Mohamad A.A., Bennacer R., El-Ganaoui M.: Double dispersion, natural convection in an open end cavity simulation via Lattice Boltzmann Method. Int. J. Therm. Sci. 49, 1944–1953 (2010)

    Article  Google Scholar 

  27. Bejan A.: Convection Heat Transfer. Wiley Inc., Hoboken (2004)

    MATH  Google Scholar 

  28. Khanafer K., Vafai K., Lightstone M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653 (2003)

    Article  MATH  Google Scholar 

  29. Brinkman H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571–581 (1952)

    Article  Google Scholar 

  30. Maxwell J.C.: A Treatise on Electricity and Magnetism, Vol. II, pp. 54. Oxford University Press, Cambridge (1873)

    Google Scholar 

  31. d’Humières D.: Generalized lattice-Boltzmann equations. In: Shizgal, B.D., Weaver, D.P. (eds) Rarefied Gas Dynamics: The Theory and Simulations, pp. 450–458. AIAA Progress in astronautics and aeronautics, Washington (1992)

    Google Scholar 

  32. Luo L.S.: Theory of the lattice Boltzmann method: lattice Boltzmann models for non ideal gases. Phys. Rev. 62, 4982–4996 (2000)

    MathSciNet  Google Scholar 

  33. Lallemand P., Luo L.S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E. 61, 6546–6562 (2000)

    Article  MathSciNet  Google Scholar 

  34. Mezrhab A., Bouzidi M., Lallemand P.: Hybrid lattice Boltzmann finite-difference simulation of convective flows. Comput. Fluids. 33, 623–641 (2004)

    Article  MATH  Google Scholar 

  35. Malaspinas O., Courbebaisse G., Deville M.: x Simulation of generalized Newtonian fluids with the lattice Boltzmann method. Int. J. Mod. Phys. C. 18, 1939–1949 (2007)

  36. Fallah K., Khayat M., Borghei M.H., Ghaderi A., Fattahi E.: Multiple-relaxation-time lattice Boltzmann simulation of non-Newtonian flows past a rotating circular cylinder. J. Non Newt. Fluid Mech. 177, 01–14 (2012)

    Article  Google Scholar 

  37. Fusegi T., Hyun J.M., Kuwahara K., Farouk B.: A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure. Int. J. Heat Mass Transf. 34(6), 1543–1557 (1991)

    Article  Google Scholar 

  38. Frederick R.L., Moraga S.G.: Three-dimensional natural convection in finned cubical enclosures. Int. J. Heat Fluid Flow. 28, 289–298 (2007)

    Article  Google Scholar 

  39. Arefmanesh A., Amini M., Mahmoodi M., Najafi M.: Buoyancy-driven heat transfer analysis in two-square duct annuli filled with a nanofluid. Eur. J. Mech. B Fluids. 33, 95–104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Krane, R.J.; Jessee, J.: Some detailed field measurements for a natural convection flow in a vertical square enclosure. In: 1st ASME-JSME Thermal Engineering Conference, vol. 1, pp. 323–329 (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Boutra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutra, A., Ragui, K., Labsi, N. et al. Natural Convection Heat Transfer of a Nanofluid into a Cubical Enclosure: Lattice Boltzmann Investigation. Arab J Sci Eng 41, 1969–1980 (2016). https://doi.org/10.1007/s13369-016-2052-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2052-3

Keywords

Navigation