Skip to main content
Log in

Explicit Solution to Predict the Temperature Distribution and Exit Temperatures in a Heat Exchanger Using Differential Transform Method

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a simple mathematical model based on energy transfer between the hot and cold fluids in a single-pass cross-flow plate-type heat exchanger is considered and the governing equations are solved using the differential transform method (DTM). DTM transforms the governing equations and its boundary conditions into a set of recurrence relations with some algebraic equations. These relations are further reduced, and then from the inverse transform, the dependent variable (temperature distribution) is obtained as a series solution in explicit form. The temperature distribution and the exit temperatures inside a single-pass cross-flow heat exchanger under steady state are obtained successfully for a single channel. The results obtained are then compared with those derived from Laplace Adomian decomposition method, finite difference method and the effectiveness-NTU approach. The comparison of the solution by DTM with other widely used industrial solutions is also shown, and the merits of the proposed method are presented. The predicted temperature distribution by the DTM is accurate, and it has excellent agreement with the effectiveness-NTU results and other well-known published results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T :

Temperature of cold fluid (K)

\({\widetilde{T}}\) :

Temperature of hot fluid (K)

Q :

Heat transfer rate (kW)

U :

Overall heat transfer coefficient \({\left({\rm W}/{\rm m}^{2}{\rm K}\right)}\)

\({\Delta T_{\rm ln}}\) :

Log mean temperature difference \({\left({\rm K}\right)}\)

\({A_{\rm tot}}\) :

Total effective heat surface area \({\left({\rm m}^{2}\right)}\)

\({A_{\rm cr}}\) :

Cross-sectional area \({\left({\rm m}^{2}\right)}\)

m :

mass \({({\rm kg})}\)

D :

Diameter \({({\rm m}^{2})}\)

\({q^{\prime\prime\prime}}\) :

Heat generation term \({({\rm W}/{\rm m}^3)}\)

h :

Convection coefficient between fluid flow and heat surface \({\left({\rm W}/{\rm m}^{2}{\rm K}\right)}\)

\({\dot {\rm m}}\) :

Mass flow rate \({\left({\rm kg}/{\rm s}\right)}\)

u, v :

velocities along X and Y directions \({\left({\rm m}/{\rm s}\right)}\)

\({c_{p}}\) :

Specific heat of the fluid \({({\rm J}/{\rm kg}\,{\rm K})}\)

\({\rho}\) :

Density of the fluid \({({\rm kg}/{\rm m}^{3})}\)

C :

Heat capacity rate =\(\frac{\mbox{mass flow rate} \times \mbox{specific heat of the fluid}}{\mbox{number of plates} \times \mbox{perpendicular length}}\) \({\left({\rm W}/{\rm mK}\right)}\)

\({{\bf k}, \widetilde{\bf k}}\) :

Thermal conductivity \({({\rm W}/{\rm mK})}\)

s :

Thickness of the heat exchanger wall \({\left({\rm m}\right)}\)

k :

Thermal conductivity of the heat exchanger wall \({\left({\rm W}/{\rm mK}\right)}\)

F :

Correction factor to fix the error got from the assumption for the log mean temperature

Re :

Reynolds number

f :

Friction factor

Pr :

Prandtl number

Pe :

Peclet number

Nu :

Nusselt number

X :

X-coordinate axis

Y :

Y-coordinate axis

l :

Length of the axis

\({\epsilon}\) :

Effectiveness

\({\beta, \gamma}\) :

Constants

\({\delta}\) :

Kronecker delta function

W :

Differential transform of \({T(x, y)}\)

V :

Differential transform of \({\widetilde{T}(x, y)}\)

P :

Differential transform of p(x, y)

cold:

Cold fluid flow

hot:

Hot fluid flow

in:

Fluid inlet

out:

Fluid outlet

tot:

Total

DTM:

Differential transform method

LADM:

Laplace Adomian decomposition method

FDM:

Finite difference method

NTU:

Number of transfer units

References

  1. Ravikumar S.G., Seetharamu K.N., Narayana P.A.: Finite element analysis of shell and tube heat exchanger. J. Heat Mass Transf. 15, 151–163 (1988)

    Article  Google Scholar 

  2. Mishra M., Das P.K., Sarangi S.: Effect of temperature and flow nonuniformity on transient behaviour of crossflow heat exchanger. Int. J. Heat Mass Transf. 51, 2583–2592 (2008)

    Article  MATH  Google Scholar 

  3. Malinowski L., Bielski S.: Transient temperature field in a parallel-flow three-fluid heat exchanger with the thermal capacitance of the walls and the longitudinal walls conduction. J. Appl. Therm. Eng. 28, 877–883 (2008)

    Google Scholar 

  4. Das S.K., Dan T.K.: Transient response of a parallel flow shell-and-tube heat exchanger. J. Heat Mass Transf. 31, 231–235 (1996)

    Article  Google Scholar 

  5. Eke G.B., Ebieto C.E.: Determination of the exit temperatures of a 1–2 shell and tube heat exchanger. Int. J. Appl. Eng. Res. 6, 9–15 (2011)

    Google Scholar 

  6. Silaipillayarputhur K., Idem S.A.: Step response of a single-pass cross flow heat exchanger with variable inlet temperatures and mass flow rates. J. Therm. Sci. Eng. Appl. 4, 044501-1–044501-6 (2012)

    Article  Google Scholar 

  7. Rajasekaran S., Kannadasan T.: A simplified predictive control for a shell and tube heat exchanger. Int. J. Eng. Sci. Technol. 2, 7245–7251 (2010)

    Google Scholar 

  8. Egwanwo, V.; Lebele-Alawa, B.T.: Prediction of the temperature distribution in a shell and tube heat exchanger using finite element model. Can. J. Mech. Sci. Eng. 3, 72–82 (2012)

  9. Zhou J.K.: Differential Transformation and its Applications for Electrical Circuits. Huarjung University Press, Wuuhahn (1986)

    Google Scholar 

  10. Jang M.J., Chen C.L., Liu Y.C.: Two-dimensional differential transform for partial differential equations. Appl. Math. Comput. 121, 261–270 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Abdel-Halim Hassan I.H.: On solving some eigenvalue-problems by using a differential transformation. Appl. Math. Comput. 127, 1–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen C.K., Ho S.H.: Solving partial differential equations by two dimensional differential transform. Appl. Math. Comput. 106, 171–179 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Arslanturk C.: Correlation equations for optimum design of annular fins with temperature dependent thermal conductivity. J. Heat Mass Transf. 45, 519–525 (2009)

    Article  Google Scholar 

  14. Ayaz F.: On the two-dimensional differential transform method. Appl. Math. Comput. 143, 361–374 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mohseni Moghadam M.; Saeedi, H.: Application of differential transforms for solving the Volterra integro-partial differential equations. Iran. J. Sci. Technol. Trans. A, 34, 59–70 (2010)

  16. Chen C.K., Ju S.P.: Application of differential transformation to transient advective- dispersive transport equation. Appl. Math. Comput. 155, 25–38 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yaghoobi H., Torabi M.: The application of differential transformation method to nonlinear equations arising in heat transfer. Int. Commun. Heat. Mass Transf. 38, 815–820 (2011)

    Article  Google Scholar 

  18. Peng H.-S., Chen C.-L.: Hybrid differential transformation and finite difference method to annular fin with temperature-dependent thermal conductivity. Int. J. Heat. Mass Transf. 54, 2427–2433 (2011)

    Article  MATH  Google Scholar 

  19. Joneidi A.A., Ganji D.D., Babaelahi M.: Differential Transformation Method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity. Int. Commun. Heat. Mass Transf. 36, 757–762 (2009)

    Article  Google Scholar 

  20. Chang S.-H., Chang I-L.: A new algorithm for calculating one-dimensional differential transform of nonlinear functions. Appl. Math. Comput. 195, 799–808 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chang S.-H., Chang I.-L.: A new algorithm for calculating two-dimensional differential transform of nonlinear functions. Appl. Math. Comput. 215, 2486–2494 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dusseldorf P.: VDI-Heat ATLAS. VDI-Verlag GmbH, Düsseldorf (1993)

    Google Scholar 

  23. Eirola, T.; Tuomela, J.; Riihimaki, K.; Heilio, M.; Haario, H.: Mathematical Model for Single-Pass Crossflow Heat Exchanger (2002). http://math.tut.fi/workshop02/TMSystemsReport.

  24. Mason, J.L.: Heat transfer in crossflow. In: Proceedings 2nd US National Congress of Applied Mechanics, ASME, pp. 801–803 (1955)

  25. Kern D.Q., Kraus A.D.: Extended Surface Heat Transfer. McGraw-Hill, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bagyalakshmi Morachan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morachan, B., Ganesh, M. & Gangadharan, S. Explicit Solution to Predict the Temperature Distribution and Exit Temperatures in a Heat Exchanger Using Differential Transform Method. Arab J Sci Eng 41, 1825–1834 (2016). https://doi.org/10.1007/s13369-015-1978-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1978-1

Keywords

Mathematics Subject Classification

Navigation