Skip to main content
Log in

Biochemical Biomarkers in the Halophilic Nanophytoplankton: Dunaliella salina Isolated from the Saline of Sfax (Tunisia)

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The purpose of the present work was to study the potential biotechnological use of Dunaliella species isolated from the solar saltern of Sfax (Tunisia). D. salina was grown in artificial seawater (3.4M NaCl) under a constant temperature (25°C) and light (\({265 {\mu}{\rm mol} {\rm photons} {\rm m}^{-2} {\rm s}^{-1}}\)). The maximal cellular density was about \({4.66\times 10^{6} {\rm cells/ml}}\), and the growth rate ranged between 0.13 and 0.16 doublings/day. Chlorophyll a reached \({52.32 \pm 0.12 {\rm mg/l}}\) in the exponential phase. Protein and carbohydrates content reached maximum values in the lag phase (\({52.4 \pm 0.2}\) and \({5.7 \pm 0.34\,{\rm mg/l}}\), respectively). The maximal values of total lipids content were obtained at the decline phase (\({92 \pm 0.87\,{\rm mg/l}}\)). In addition, during this study, the analyses of the fatty acids profile have shown the presence of essential fatty acids that accumulate in D. salina during the stress phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cardozo K.H. et al.: Metabolites from algae with economical impact. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 146, 60–78 (2007)

    Article  Google Scholar 

  2. Jamers A. et al.: Omics in algae: paving the way for a systems biological understanding of algal stress phenomena. Aquat. Toxicol. 92, 114–121 (2009)

    Article  Google Scholar 

  3. Borowitzka M.A., Borowitzka L.J.: Micro-algal Biotechnology. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  4. Oren A.: A hundred years of Dunaliella research. Saline Systems 1, 1–14 (2005)

    Article  Google Scholar 

  5. Tafresh A.H., Shariati M.: Dunaliella biotechnology: methods and applications. J. Appl. Microbiol. 107, 14–35 (1998)

    Article  Google Scholar 

  6. Teodoresco, E.C.: (1905) Organisation et development du Dunaliella, nouveau genre de Volvocacee- Polyblepharidee. Beih. Bot. Zentralblatt, Bd.18 Abt. 1, 215–232

  7. Ben-Amotz A., Avron M.: The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol. 8, 121–126 (1990)

    Article  Google Scholar 

  8. Pick, U.: Adaptation of the halotolerant alga Dunaliella to high salinity. In: Lauchi, A., Luttge, U. (eds.) Salinity, Environment Plants; Molecules, pp. 97–112. Klewer Academic Publishers, Dordrecht (2002)

  9. Premkumar L. et al.: Identification; cDNA cloning; expression; crystallization and preliminary X-ray analysis of an exceptionally halotolerant carbonic anhydrase from Dunaliella salina. Acta Crystallogr. D Biol. Crystallogr. 59, 1084–1086 (2003)

    Article  Google Scholar 

  10. Premkumar L. et al.: Three-dimensional structure of a halotolerant algal carbonic anhydrase predicts halotolerance of a mammalian homolog. Proc. Natl. Acad. Sci. USA 102, 7493–7498 (2005)

    Article  Google Scholar 

  11. Mishra A. et al.: Physiological characterization and stress induced metabolic responses of Dunaliella salina isolated from salt pan. J. Ind. Microbiol. Biotechnol. 35, 1093–1101 (2008)

    Article  Google Scholar 

  12. Chen J.-C. et al.: Low density supercritical fluids precipitation of 9-cis and all trans-β-carotene enriched particulates from Dunaliella salina. J. Chromatogr. A 1299, 1–9 (2013)

  13. Yang D.-J. et al.: Suppressive effect of carotenoid extract of Dunaliella salina alga on production of LPS-stimulated pro-inflammatory mediators in RAW264.7 cells via NF-κB and JNK inactivation. J. Funct. Foods 5, 607–615 (2013)

    Article  Google Scholar 

  14. Metting J.R.: Biodiversity and application of microalgae. J. Ind. Microbiol. Biotchnol. 17, 477–489 (1996)

    Article  Google Scholar 

  15. Dufossé L. et al.: Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or and industrial reality?. Trends Food Sci. Technol. 16, 389–406 (2005)

    Article  Google Scholar 

  16. Raja R. et al.: Exploitation of Dunaliella for β-carotene production. Appl. Microbiol. Biotechnol. 74, 517–523 (2007)

    Article  Google Scholar 

  17. Lamers P.P. et al.: Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnol. 26, 631–638 (2008)

    Article  Google Scholar 

  18. Saha S.K. et al.: Effect of macro- and micro-nutrient limitation on superoxide dismutase activities and carotenoid levels in microalga Dunaliella salina CCAP 19/18. Bioresour. Technol. 147, 23–28 (2013)

    Article  Google Scholar 

  19. Fu W. et al.: Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl. Microbiol. Biotechnol. 97, 2395–2403 (2013)

    Article  Google Scholar 

  20. Tran D. et al.: Phylogenetic study of some strains of Dunaliella. Am. J. Environ. Sci. 9(4), 317–321 (2013)

    Article  Google Scholar 

  21. Rabbani S. et al.: Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol. 116, 1239–1248 (1998)

    Article  Google Scholar 

  22. Lamers P.P. et al.: Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Bioelectrochem. Bioenerg. 106, 638–648 (2010)

    Article  Google Scholar 

  23. Golldack D. et al.: The effects of Sudden Salt Stress on Protein Synthesis in the Green Alga Dunaliella parva. J. Plant Physiol. 146, 508–514 (1995)

    Article  Google Scholar 

  24. Ayadi H. et al.: Etude quantitative des peuplements phytoplanctoniques et zooplanctoniques dans des bassins de la saline de Sfax en relation avec les paramètres physicochimiques. Revue des Sciences de l’Eau 15, 123–135 (2002)

    Article  Google Scholar 

  25. Amdouni, R.: Introduction générale à l’étude des marais salants de la saline de Sfax Laboratoire d’analyses de la Compagnie générale des salines tunisiennes (COTUSAL) Colloque organisé par la Maison de France à Sfax. 8 et 9 mai 2009.

  26. Fazeli M. et al.: Carotenoids accumulation by Dunaliella tertiolecta (Lake Urmia Isolate) and Dunaliella salina (CCAP 19 / 18 & WT) under stress conditions. Daru 14, 146–150 (2006)

    Google Scholar 

  27. Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382 (1987)

    Article  Google Scholar 

  28. Lowry O.H. et al.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  29. Dubois M. et al.: Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 28(3), 350–356 (1956)

    Article  Google Scholar 

  30. Folch J. et al.: A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957)

    Google Scholar 

  31. Lepage G., Roy C.C.: Improved recovery of fatty acids through direct transesterification without prior extraction or purification. J. Lipid Res. 16, 593–600 (1984)

    Google Scholar 

  32. Fuentes M.M.R. et al.: Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem. 70, 345–353 (2000)

    Article  Google Scholar 

  33. Shaw P.J.: Separation of molecular size classes of aquatic humic substances using ultrafiltration and dialysis. Environ. Technol. 15, 765–774 (1994)

    Article  Google Scholar 

  34. Burba P. et al.: Membrane filtration studies of aquatic humic substances and their metal species: a concise overview. Part1. Analytical fractionation by means of sequential-stage ultrafiltration. Talanta 45, 977–988 (1998)

    Article  Google Scholar 

  35. Furnestin M.-L.: Phytoplancton et production primaire dans le secteur sud occidantal de la méditerranée. Rev. Trav. Inst. Pêchemarit 37, 19–68 (1973)

    Google Scholar 

  36. Margalef R.: Valeur indicatrice de la composition des pigments du phytoplancton sur la productivité, composition taxonomique et propriétés dynamiques des populations. Rapp. Comm. Int. Médit. 15(2), 277–281 (1960)

    Google Scholar 

  37. Orosa M. et al.: Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. Bioresour. Technol. 96, 373–378 (2005)

    Article  Google Scholar 

  38. Ben-Amotz A.: Accumulation of β-carotene in halotolerant algae: Purification and characterization of β-carotene rich globules from Dunaliella bardawil (Chlorophyceae). J. Phycol. 18, 529–537 (1982)

    Article  Google Scholar 

  39. Gómez P.I., González M.A.: The effect of temperature and irradiance on the growth and carotenogenic capacity of seven strains of Dunaliella salina (Chlorophyta) cultivated under laboratory conditions. Biol. Res. 38, 151–162 (2005)

    Article  Google Scholar 

  40. Fabregas J. et al.: Biomass production and biochemical variability of the marine microalga Dunaliella tertiolecta (butcher) with high nutrient concentrations. Aquaculture 53, 187–199 (1986)

    Article  Google Scholar 

  41. Ganf G.: Use of protein to carbohydrate ratios to analyse for nutrient deficiency in phytoplankton. Aust. J. Mar. Freshw. Res. 37, 183–197 (1986)

    Article  Google Scholar 

  42. Healey F.P., Hendzel L.L.: Indicators of phosphorus and nitrogen deficiency in five algae in culture. J. Fish. Res. Board Canada 36, 1364–1369 (1979)

    Article  Google Scholar 

  43. Lamers P.P. et al.: Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular Green microalga. J. Biotechnol. 162, 21–27 (2012)

    Article  Google Scholar 

  44. Wykoff D.D. et al.: The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol. 117, 129–139 (1998)

    Article  Google Scholar 

  45. Persic Vet: Changes in N and P limitation induced by water level fluctuations in nature park kopackirit (Croatia): nutrient enrichment bioassay. Aquat. Ecol. 43(1), 27–36 (2009)

    Article  Google Scholar 

  46. Sun Y., Wang C.: The optimal growth conditions for the biomass production of Isochrysis galbana and the effects that phosphorus, Zn2+, CO2, and light intensity have on the biochemical composition of Isochrysis galbana and the activity of extracellular CA. Biotechnol. Bioprocess Eng. 14(2), 225–231 (2009)

    Article  Google Scholar 

  47. Klass, D.L.: Biomass for renewable energy and fuels. In: Cleveland, C.J. (ed.) Encyclopedia of Energy, pp. 193–212. Elsevier Inc., Amsterdam (2004)

  48. Fogg G.E.: The Ecological significance of extracellular products of phytoplankton. Bot. Mar 26, 3–14 (1983)

    Article  Google Scholar 

  49. Wood M.A., Van Valen L.M.: Paradox lost? On the release of energy-rich compounds by phytoplankton. Mar. Microbiol. Food Webs 4, 103–116 (1990)

    Google Scholar 

  50. Funk C.D.: Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875 (2001)

    Article  Google Scholar 

  51. Burr G.O.: On the nature and role of the fatty acids essential in nutrition. J. Biol. Chem. 97, 1–9 (1932)

    Google Scholar 

  52. Sinclair A.J. et al.: What is the role of β-linolenic acid for mammals. Lipids 37, 13–23 (2002)

    Article  Google Scholar 

  53. Lee, S.-G., et al.: Fatty acids and global metabolites profiling of Dunaliella tertiolecta by shifting culture conditions to nitrate deficiency and high light at different growth phases. Process Biochem. 49, 996–1004 (2014)

  54. Roleda M.Y. et al.: Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresour Technol 129, 439–449 (2012)

    Article  Google Scholar 

  55. Stephenson A.L. et al.: Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feed stocks. Biofuels 1, 47–58 (2010)

    Article  Google Scholar 

  56. Praveenkumar R. et al.: Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: evaluation for biodiesel production. Biomass Bioenergy 37, 60–66 (2012)

    Article  Google Scholar 

  57. Knothe, G.: Will biodiesel derived from algal oils live up to its promise? A fuel property assessment. Lipid Technol. 23, 247–249

  58. Ramos M.J. et al.: Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 100, 261–268 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Athmouni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belghith, T., Athmouni, K., Elloumi, J. et al. Biochemical Biomarkers in the Halophilic Nanophytoplankton: Dunaliella salina Isolated from the Saline of Sfax (Tunisia). Arab J Sci Eng 41, 17–24 (2016). https://doi.org/10.1007/s13369-015-1808-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1808-5

Keywords

Navigation