Skip to main content
Log in

Strength and Physico-chemical Characteristics of Fly Ash–Bottom Ash Mixture

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The quantity of coal combustion products, particularly fly ash (FA) and bottom ash (BA), has been increasing from coal power plants around the world. The major problem of a coal combustion-based power plant is that it produces huge quantities of solid waste. Recently, there have been efforts to use FA and BA together as a mixture in construction works. This paper investigates morphology and chemical and strength characteristics of an FA–BA mixture for various curing periods. Scanning electron microscopy (SEM), X-ray fluorescence (XRF), and consolidated undrained triaxial tests were used to determine the physico-chemical characteristics of the mixture. Based on SEM results, it was found that, with an increasing ratio of BA to FA, the number of irregular particles in the mixture increased. The results of XRF indicated noticeable changes in the surface composition of both FA and BA particles after mixing. The physico-chemical test results indicate the formation of a new gel form product in the mixture, which has been identified as calcium silicate hydrate (C-S-H). From an engineering point of view, the results indicated that the value of modulus of elasticity decreases with increasing BA content, from 30 to 70 %, in the ash mixture. However, the increase in BA from 30 to 70 % did not have any significant effect on the shear strength of the FA–BA mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saxena M., Asokan P., Aparna A.: Effect of fly ash on clay soil. Clay Res. 17, 109–114 (1998)

    Google Scholar 

  2. Ramadoss P., Sundararajan T.: Utilization of lignite-based bottom ash as partial replacement of fine aggregate in masonry mortar. Arab. J. Sci. Eng. 39(2), 737–745 (2014)

    Article  Google Scholar 

  3. Khan M.S., Prasad J., Abbas H.: Effect of high temperature on high-volume fly ash concrete. Arab. J. Sci. Eng. 38(6), 1369–1378 (2013)

    Article  Google Scholar 

  4. Asokan P., Saxena M., Aparna A., Asoletar S.R.: Characteristics variation of coal combustion residues in an Indian ash pond. Waste Manag. Res. 22, 265–275 (2004)

    Article  Google Scholar 

  5. Canpolat F., Yılmaz K., Köse M.M., Sümer M., Yurdusev M.A.: Use of zeolite, coal bottom ash and fly ash as replacement materials in cement production. Cem. Concr. Res. 34(5), 731–735 (2004)

    Article  Google Scholar 

  6. Chindaprasirt P., Jaturapitakkul C., Chalee W., Rattanasak U.: Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag. 29(2), 539–543 (2009)

    Article  Google Scholar 

  7. Naganathan S., Subramaniam N., Mustapha K.N.: Development of brick using thermal power plant bottom ash and fly ash. Asian J. Civil Eng. (Building and Housing) 13, 275–287 (2012)

    Google Scholar 

  8. Chindaprasirt P., Nuaklong P., Zaetang Y., Sujumnongtokul P., Sata V.: Mechanical and thermal properties of recycling lightweight pervious concrete. Arab. J. Sci. Eng. 40, 443–450 (2015)

    Article  Google Scholar 

  9. Kaniraj S.R., Gayathri V.: Geotechnical behavior of fly ash mixed with randomly oriented fiber inclusions. Geotext. Geomembr. 21(3), 123–149 (2003)

    Article  Google Scholar 

  10. Pandian N.S.: Fly ash characterization with reference to geotechnical applications. J. Indian Inst. Sci. 84(6), 189 (2013)

    Google Scholar 

  11. Kutchko B.G., Kim A.G.: Fly ash characterization by SEM–EDS. Fuel 85(17), 2537–2544 (2006)

    Article  Google Scholar 

  12. Pan J.R., Huang C., Kuo J.J., Lin S.H.: Recycling MSWI bottom and fly ash as raw materials for Portland cement. Waste Manag. 28(7), 1113–1118 (2008)

    Article  Google Scholar 

  13. Targan Ş., Olgun A., Erdogan Y., Sevinc V.: Influence of natural pozzolan, colemanite ore waste, bottom ash, and fly ash on the properties of Portland cement. Cem. Concr. Res. 33(8), 1175–1182 (2003)

    Article  Google Scholar 

  14. Kou S.C., Poon C.S., Chan D.: Influence of fly ash as cement replacement on the properties of recycled aggregate concrete. J. Mater. Civil Eng. 19(9), 709–717 (2007)

    Article  Google Scholar 

  15. Meegoda J.N., Gao S., Al-Joulani N.M.A.: Solid waste and ecological issues of coal to energy. J. Hazard. Toxic Radioact. Waste 15, 99–107 (2011)

    Article  Google Scholar 

  16. Bentz D.P., Sato T., De la Varga I., Weiss W.J.: Fine limestone additions to regulate setting in high volume fly ash mixtures. Cem. Concr. Compos. 34(1), 11–17 (2012)

    Article  Google Scholar 

  17. Kim B., Prezzi M., Salgado R.: Geotechnical properties of fly and bottom ash mixtures for use in highway embankments. J. Geotech. Geoenviron. Eng. 131(7), 914–924 (2005)

    Article  Google Scholar 

  18. Sathonsaowaphak A., Chindaprasirt P., Pimraksa K.: Workability and strength of lignite bottom ash geopolymer mortar. J. Hazard. Mater. 168(1), 44–50 (2009)

    Article  Google Scholar 

  19. Awang A.R., Marto A., Makhtar A.M.: Morphological and strength properties of Tanjung Bin coal ash mixtures for applied in geotechnical engineering work. Int. J. Adv. Sci. Eng. Inf. Technol. 2, 55–62 (2012)

    Google Scholar 

  20. Kathirvel P., Saraswathy V., Karthik S.P., Sekar A.S.S.: Strength and durability properties of quaternary cement concrete made with fly ash, rice husk ash and limestone powder. Arab. J. Sci. Eng. 38(3), 589–598 (2013)

    Article  Google Scholar 

  21. Muhardi A.M., Kassim K.A., Makhtar A.M., Lee F.W., Yap S.L.: Engineering characteristics of Tanjung Bin coal ash. EJGE 15, 1117–1129 (2010)

    Google Scholar 

  22. Kim, B.J.; Yoon, S.M.; Balunaini, U.: Determination of ash mixture properties and construction of test embankment—part A. Joint Transportation Research Program, Final Report, FHWA/IN/JTRP-2006/24. Purdue University, W. Lafayette, Indiana (2006)

  23. Wang S., Wu H.: Environmental-benign utilisation of fly ash as low-cost adsorbents. J. Hazard. Mater. 136(3), 482–501 (2006)

    Article  Google Scholar 

  24. Ginés O., Chimenos J.M., Vizcarro A., Formosa J., Rosell J.R.: Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: environmental and mechanical considerations. J. Hazard. Mater. 169(1), 643–650 (2009)

    Article  Google Scholar 

  25. JCPDS: Index to the Powder Diffraction File. International Center for Diffraction Data, Swarthmore (1995)

  26. Argiz C., Sanjuán M.A., Menéndez E.: Effect of mixes made of coal bottom ash and fly ash on the mechanical strength and porosity of Portland cement. Mater. Constr. 63(309), 49–64 (2013)

    Article  Google Scholar 

  27. Marto A., Latifi N., Eisazadeh A.: Effect of non-traditional additives on engineering and microstructural characteristics of laterite soil. Arab. J. Sci. Eng. 39(10), 6949–6958 (2014)

    Article  Google Scholar 

  28. Latifi N., Marto A., Eisazadeh A.: Analysis of strength development in non-traditional liquid additive-stabilized laterite soil from macro-and micro-structural considerations. Environ. Earth Sci. 73, 1133–1141 (2015)

    Article  Google Scholar 

  29. Chindaprasirt P., De Silva P., Hanjitsuwan S.: Effect of high-speed mixing on properties of high calcium fly ash geopolymer paste. Arab. J. Sci. Eng. 39, 6001–6007 (2014)

    Article  Google Scholar 

  30. Latifi N., Eisazadeh A., Marto A.: Strength behavior and micro-structural characteristics of tropical laterite soil treated with sodium silicate-based liquid stabilizer. Environ. Earth Sci. 72, 91–98 (2014)

    Article  Google Scholar 

  31. Antiohos S., Tsimas S.: Activation of fly ash cementitious systems in the presence of quicklime: part I. Compressive Strength and pozzolanic reaction rate. Cem. Concr. Res. 34(5), 769–779 (2004)

    Article  Google Scholar 

  32. Eisazadeh A., Kassim K.A., Nur H.: Solid-state NMR and FTIR studies of lime stabilized montmorillonitic and lateritic clays. Appl. Clay Sci. 67, 5–10 (2012)

    Article  Google Scholar 

  33. Ghosh A., Subbarao C.: Strength characteristics of class F fly ash modified with lime and gypsum. J. Geotech. Geoenviron. Eng. 133(7), 757–766 (2007)

    Article  Google Scholar 

  34. Marwa, B.A.: Critical State Of Fly Ash–Bottom Ash Mixture. Master Project. Universiti Teknologi Malaysia (2010)

  35. Lav A.H., Lav M.A., Goktepe A.B.: Analysis and design of a stabilized fly ash as pavement base material. Fuel 85(16), 2359–2370 (2006)

    Article  Google Scholar 

  36. Kaniraj S.R., Gayathri V.: Permeability and consolidation characteristics of compacted fly ash. J. Energy Eng. 130(1), 18–43 (2004)

    Article  Google Scholar 

  37. Head K.H., Epps R.: Manual of Soil Laboratory Testing, vol. 1, pp. 291–298. Pentech Press, London (1980)

    Google Scholar 

  38. Das B.M.: Principles of Foundation Engineering, 7th edn. Cengage Learning, Boston (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Latifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latifi, N., Marto, A., Rashid, A.S.A. et al. Strength and Physico-chemical Characteristics of Fly Ash–Bottom Ash Mixture. Arab J Sci Eng 40, 2447–2455 (2015). https://doi.org/10.1007/s13369-015-1647-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1647-4

Keywords

Navigation