Skip to main content
Log in

Mathematical Determination of a Flute, Construction of a CAD Model, and Determination of the Optimal Geometric Features of a Microdrill

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The objective of this paper was to determine mathematically a flute, to construct a CAD model and to determine the optimal geometric features of a 0.1mm diameter of a microdrill based on the stress analysis. The flute of a microdrill was determined mathematically by defining the undercutting relative positions of both the microdrill and grinding wheel and their profiles with respect to setting angle. The mathematically determined flute was used to construct a CAD model of a microdrill using Pro/Engineer software. The cross-sectional comparison between the model and fabricated microdrill was carried out by cutting at different lengths, and the results of the web thickness of the model and the fabricated microdrill were approximately the same. Similarly, the images of primary flank areas and secondary flank areas of fabricated microdrills were taken using optical microscope, and they were compared with the shapes of cutting edge, chisel edge, primary flank areas and secondary flank areas of the model. Based on this comparison, they were almost the same. Hence, the consideration of the mathematically determined flute for the construction of the CAD model of a microdrill was feasible. The optimal geometric features of a microdrill have been determined by setting design control parameters for geometric features and carrying out optimization of the stress/displacement analysis using Pro/Mechanica software so that the maximum Von Mises stress of the microdrill was minimized below the compressive strength of the material property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coombs C.: Printed Circuits Handbook. McGraw-Hill, New York (2007)

    Google Scholar 

  2. Zheng L.J., Wang C.Y., Fu L.Y., Yang L.P., Qu Y.P., Song Y.X.: Wear mechanisms of micro-drills during dry high speed drilling of PCB. J. Mater. Process. Technol. 212(10), 1989–1997 (2012). doi:10.1016/j.jmatprotec.2012.05.004

    Article  Google Scholar 

  3. Khorasani A.M., Asadnia M., Saadatkia P.: Modeling of TiC-N thin film coating process on drills using particle swarm optimization algorithm. Arab. J. Sci. Eng. 38(6), 1565–1571 (2013)

    Article  Google Scholar 

  4. Uysal A.: A study on drilling of AISI 304L stainless steel with nanocomposite-coated drill tools. Arab. J. Sci. Eng. 39(11), 8279–8285 (2014)

    Article  Google Scholar 

  5. Hsieh J.F.: Mathematical modeling of a complex helical drill point. J. Manuf. Sci. Eng. Trans. ASME 131(6), 0610061–06100611 (2009)

    Article  Google Scholar 

  6. Hsieh J.-F., Lin P.D.: Drill point geometry of multi-flute drills. Int. J. Adv. Manuf. Technol. 26(5-6), 466–476 (2005). doi:10.1007/s00170-003-2027-x

    Article  Google Scholar 

  7. Radhakrishnan T., Wu S.M., Lin C.: A mathematical model for split point drill flanks. J. Eng. Ind. 105(3), 137–142 (1983). doi:10.1115/1.3185879

    Article  Google Scholar 

  8. Tsai W.D., Wu S.M.: A mathematical model for drill point design and grinding. J. Eng. Ind. 101(3), 333–340 (1979). doi:10.1115/1.3439515

    Article  Google Scholar 

  9. Tandon P., Gupta P., Dhande S.G.: Modeling of twist drills in terms of 3D angles. Int. J. Adv. Manuf. Technol. 38(5-6), 543–550 (2008). doi:10.1007/s00170-007-1150-5

    Article  Google Scholar 

  10. Paul A., Kapoor S.G., DeVor R.E.: Chisel edge and cutting lip shape optimization for improved twist drill point design. Int. J. Mach. Tools Manuf. 45(4–5), 421–431 (2005). doi:10.1016/j.ijmachtools.2004.09.010

    Article  Google Scholar 

  11. Fujii S., DeVries M.F., Wu S.M.: An analysis of drill geometry for optimum drill design by computer. Part II—computer-aided design. J. Eng. Ind. 92(3), 657–666 (1970). doi:10.1115/1.3427828

    Article  Google Scholar 

  12. Fujii S., DeVries M.F., Wu S.M.: An analysis of drill geometry for optimum drill design by computer. Part I—drill geometry analysis. J. Eng. Ind. 92(3), 647–656 (1970). doi:10.1115/1.3427827

    Article  Google Scholar 

  13. Kang S.K., Ehmann K.F., Lin C.: A CAD approach to helical groove machining—I. Mathematical model and model solution. Int. J. Mach. Tools Manuf. 36(1), 141–153 (1996). doi:10.1016/0890-6955(95)92631-8

    Article  Google Scholar 

  14. Kang S.K., Ehmann K.F., Lin C.: A CAD approach to helical groove machining. Part 2: numerical evaluation and sensitivity analysis. Int. J. Mach. Tools Manuf. 37(1), 101–117 (1997). doi:10.1016/0890-6955(95)00039-9

    Article  Google Scholar 

  15. Sheth D.S., Malkin S.: CAD/CAM for geometry and process analysis of helical groove machining. CIRP Ann. Manuf. Technol. 39(1), 129–132 (1990). doi:10.1016/S0007-8506(07)61018-X

    Article  Google Scholar 

  16. Kaldor S., Rafael A.M., Messinger D.: On the CAD of profiles for cutters and helical flutes-geometrical aspects. CIRP Ann. Manuf. Technol. 37(1), 53–56 (1988). doi:10.1016/S0007-8506(07)61584-4

    Article  Google Scholar 

  17. Radhakrishnan T., Kawlra R.K., Wu S.M.: A mathematical model of the grinding wheel profile required for a specific twist drill flute. Int. J. Mach. Tool Des. Res. 22(4), 239–251 (1982)

    Article  Google Scholar 

  18. Ehmann K.F., DeVries M.F.: Grinding wheel profile definition for the manufacture of drill flutes. CIRP Ann. Manuf. Technol. 39(1), 153–156 (1990). doi:10.1016/S0007-8506(07)61024-5

    Article  Google Scholar 

  19. Chang W.-T., Chen T.-H., Tarng Y.-S.: Measuring characteristic parameters of form grinding wheels used for microdrill fluting by computer vision. Trans. Can. Soc. Mech. Eng. 35(3), 383–401 (2011)

    Google Scholar 

  20. Hinds B.K., Treanor G.M.: Analysis of stresses in micro-drills using the finite element method. Int. J. Mach. Tools Manuf. 40(10), 1443–1456 (2000). doi:10.1016/S0890-6955(00)00007-9

    Article  Google Scholar 

  21. Chen W.-C.: Applying the finite element method to drill design based on drill deformations. Finite Elem. Anal. Des. 26(1), 57–81 (1997). doi:10.1016/S0168-874X(96)00071-6

    Article  Google Scholar 

  22. Abele, E.; Fujara, M.; Schäfer, D.: Holistic approach for a simulation-based twist drill geometry optimization. In: ASME 2011 International Manufacturing Science and Engineering Conference, pp. 137–144 (2011). doi:10.1115/MSEC2011-50102

  23. Selvam S.V.M., Sujatha C.: Twist drill deformation and optimum drill geometry. Comput. Struct. 57(5), 903–914 (1995). doi:10.1016/0045-7949(94)00615-A

    Article  MATH  Google Scholar 

  24. Yan L., Jiang F.: A practical optimization design of helical geometry drill point and its grinding process. Int. J. Adv. Manuf. Technol. 64(9–12), 1387–1394 (2013). doi:10.1007/s00170-012-4109-0

    Article  Google Scholar 

  25. Zhang W., Wang X., He F., Xiong D.: A practical method of modelling and simulation for drill fluting. Int. J. Mach. Tools Manuf. 46(6), 667–672 (2006). doi:10.1016/j.ijmachtools.2005.07.007

    Article  Google Scholar 

  26. Shiou F.J., Hung K.H.: Determination of the optimal geometrical features of a microdrill. Appl. Mech. Mater. 284, 702–706 (2013)

    Article  Google Scholar 

  27. Jain, K.C.; Chitale, A.K.: Textbook of Production Engineering. PHI Learning (2010)

  28. Shaw M.C.: Metal Cutting Principles. Clarendon Press, Oxford (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Jung Shiou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogale, T.M., Shiou, FJ. & Tang, GR. Mathematical Determination of a Flute, Construction of a CAD Model, and Determination of the Optimal Geometric Features of a Microdrill. Arab J Sci Eng 40, 1497–1515 (2015). https://doi.org/10.1007/s13369-015-1632-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1632-y

Keywords

Navigation